Recuperative potential of nano-biochar to alleviate arsenic toxicity in soybean (Glycine max): Modulation of uptake, morphological and biochemical properties
Mohammad Faisal, Aynur Bilmez, Mohammad Faizan, Yawar Habib, Haider Sultan, Abdulrahman A. Alatar, Ranjith Pathirana
{"title":"Recuperative potential of nano-biochar to alleviate arsenic toxicity in soybean (Glycine max): Modulation of uptake, morphological and biochemical properties","authors":"Mohammad Faisal, Aynur Bilmez, Mohammad Faizan, Yawar Habib, Haider Sultan, Abdulrahman A. Alatar, Ranjith Pathirana","doi":"10.1039/d5en00227c","DOIUrl":null,"url":null,"abstract":"Arsenic (As) accumulation in soils is steadily rising, making it increasingly toxic to a variety of crop plants and humans. As reduce plant productivity by interfering with several molecular, biochemical, and morphological aspects of plant metabolism. Therefore, introducing new agents to address these issues is imperative. This study demonstrates the effective use of nano-biochar (nano-BC) to mitigate As stress toxicity in Glycine max (soybean) plants. We determined the effect of nano-BC (1% w/w) on mitigating As (50 µM) stress in soybean by examining various growth parameters and metabolic attributes. As stress inhibited plant height (by 51%) and net photosynthetic rate (by 50%) and caused the buildup of reactive oxygen species (ROS); however, nano-BC treatments significantly reversed all these parameters. Moreover, the As stress increased malondialdehyde (by 78%) and hydrogen peroxide (by 67%), which were partially reversed by nano-BC in the As-treated plants. This outcome may be attributed to activation of the plant defense response, particularly antioxidants, triggered by nano-BC. Overall, As tolerance in soybeans was positively regulated by nano-BC. However, additional research is required to fully understand the intricate mechanisms behind nano-BC and its defense mechanism against As.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"18 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d5en00227c","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic (As) accumulation in soils is steadily rising, making it increasingly toxic to a variety of crop plants and humans. As reduce plant productivity by interfering with several molecular, biochemical, and morphological aspects of plant metabolism. Therefore, introducing new agents to address these issues is imperative. This study demonstrates the effective use of nano-biochar (nano-BC) to mitigate As stress toxicity in Glycine max (soybean) plants. We determined the effect of nano-BC (1% w/w) on mitigating As (50 µM) stress in soybean by examining various growth parameters and metabolic attributes. As stress inhibited plant height (by 51%) and net photosynthetic rate (by 50%) and caused the buildup of reactive oxygen species (ROS); however, nano-BC treatments significantly reversed all these parameters. Moreover, the As stress increased malondialdehyde (by 78%) and hydrogen peroxide (by 67%), which were partially reversed by nano-BC in the As-treated plants. This outcome may be attributed to activation of the plant defense response, particularly antioxidants, triggered by nano-BC. Overall, As tolerance in soybeans was positively regulated by nano-BC. However, additional research is required to fully understand the intricate mechanisms behind nano-BC and its defense mechanism against As.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis