Marta Łaszcz, Magdalena Urbanowicz, Ewelina Baran, Piotr Kulinowski
{"title":"Toward pharmaceutical selective laser sintering 3D printing - a thermal and temperature-dependent analysis perspective","authors":"Marta Łaszcz, Magdalena Urbanowicz, Ewelina Baran, Piotr Kulinowski","doi":"10.1016/j.addr.2025.115698","DOIUrl":null,"url":null,"abstract":"The potential advantages of pharmaceutical additive manufacturing (AM) are thoroughly described in the literature. Challenges related to pharmaceutical AM are less discussed. Selective laser sintering (SLS) is one of the AM methods possible for pharmaceutical applications. The article addresses aspects of SLS that are not typically explored in pharmaceutical studies. The literature research was conducted in parallel for both non-pharmaceutical (technical) and pharmaceutical SLS. As a result, in-depth studies on the temperature-dependent properties (rheological and optical) and thermal properties of powders for general technical printing are presented, along with the characterization of the laser sintering process. Special attention is given to the development of the “processing window” and “energy density” terms, as they continue to evolve. An application of a wide range of thermal analysis techniques is presented, including fast differential calorimetry, hot-stage microscopy, thermovision, and dielectric thermal analysis. Next, the complexity, regarding crystalline/semicrystalline/amorphous substances combination and their melt miscibility for pharmaceutical powders is marked. Pharmaceutical SLS studies are also analyzed, with emphasis on thermal aspects. Generally, pharmaceutical studies lack meaningful temperature-dependent and thermal analysis. The only significant exception is studies on drug substance amorphization during the SLS process. The main message is that pharmaceutical SLS should benefit from the methods and ideas developed for technical SLS. In particular, the research directions should include: (1) conscious powder design regarding the specificity of SLS manufacturing method, which completely different from powder compression (API - excipients matching), (2) extending the set of research methods, (3) consolidation process elucidation, (4) powder reusing or powder reusing avoiding, (5) searching for potential new carriers/excipients dedicated to pharmaceutical SLS process.","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"18 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.addr.2025.115698","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The potential advantages of pharmaceutical additive manufacturing (AM) are thoroughly described in the literature. Challenges related to pharmaceutical AM are less discussed. Selective laser sintering (SLS) is one of the AM methods possible for pharmaceutical applications. The article addresses aspects of SLS that are not typically explored in pharmaceutical studies. The literature research was conducted in parallel for both non-pharmaceutical (technical) and pharmaceutical SLS. As a result, in-depth studies on the temperature-dependent properties (rheological and optical) and thermal properties of powders for general technical printing are presented, along with the characterization of the laser sintering process. Special attention is given to the development of the “processing window” and “energy density” terms, as they continue to evolve. An application of a wide range of thermal analysis techniques is presented, including fast differential calorimetry, hot-stage microscopy, thermovision, and dielectric thermal analysis. Next, the complexity, regarding crystalline/semicrystalline/amorphous substances combination and their melt miscibility for pharmaceutical powders is marked. Pharmaceutical SLS studies are also analyzed, with emphasis on thermal aspects. Generally, pharmaceutical studies lack meaningful temperature-dependent and thermal analysis. The only significant exception is studies on drug substance amorphization during the SLS process. The main message is that pharmaceutical SLS should benefit from the methods and ideas developed for technical SLS. In particular, the research directions should include: (1) conscious powder design regarding the specificity of SLS manufacturing method, which completely different from powder compression (API - excipients matching), (2) extending the set of research methods, (3) consolidation process elucidation, (4) powder reusing or powder reusing avoiding, (5) searching for potential new carriers/excipients dedicated to pharmaceutical SLS process.
期刊介绍:
The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery.
In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.