Application of artificial intelligence for the detection of obstructive sleep apnea based on clinical and demographic data: a systematic review.

IF 2.7
Manuel Casal-Guisande, Mar Mosteiro-Añón, María Torres-Durán, Alberto Comesaña-Campos, Alberto Fernández-Villar
{"title":"Application of artificial intelligence for the detection of obstructive sleep apnea based on clinical and demographic data: a systematic review.","authors":"Manuel Casal-Guisande, Mar Mosteiro-Añón, María Torres-Durán, Alberto Comesaña-Campos, Alberto Fernández-Villar","doi":"10.1080/17476348.2025.2567046","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Artificial intelligence (AI) has shown promise in enhancing the detection and stratification of obstructive sleep apnea (OSA) using clinical and demographic data. This systematic review assessed the effectiveness of AI models, methodological quality, and future research needs.</p><p><strong>Methods: </strong>Following PRISMA guidelines, a systematic search of PubMed (2014-2024) identified studies applying AI to detect or stratify OSA using clinical/demographic data, validated against polysomnography or cardiorespiratory polygraphy, and reporting performance metrics such as the area under the curve (AUC). Studies primarily based on wearable devices were excluded. Methodological quality and risk of bias were evaluated using the PROBAST tool.</p><p><strong>Results: </strong>Of 447 records, 26 met inclusion criteria. Common algorithms included decision trees, support vector machines, and neural networks, frequently using variables such as age, BMI, neck circumference, and comorbidities. AUC values ranged from 0.62 to 0.93, with most exceeding 0.80. Research output increased substantially between 2021 and 2024. Methodological heterogeneity and limited external validation hindered comparability. Exclusion of incomplete cases was a recurrent issue.</p><p><strong>Conclusions: </strong>AI models show potential for improving OSA detection, but methodological limitations restrict generalizability. Future studies should prioritize external validation, diverse populations, and adherence to standardized reporting frameworks to enable clinical translation.</p><p><strong>Protocol registration: </strong>https://www.crd.york.ac.uk/PROSPERO/view/CRD420251025868 identifier is CRD420251025868.</p>","PeriodicalId":94007,"journal":{"name":"Expert review of respiratory medicine","volume":" ","pages":"1-18"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert review of respiratory medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17476348.2025.2567046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Artificial intelligence (AI) has shown promise in enhancing the detection and stratification of obstructive sleep apnea (OSA) using clinical and demographic data. This systematic review assessed the effectiveness of AI models, methodological quality, and future research needs.

Methods: Following PRISMA guidelines, a systematic search of PubMed (2014-2024) identified studies applying AI to detect or stratify OSA using clinical/demographic data, validated against polysomnography or cardiorespiratory polygraphy, and reporting performance metrics such as the area under the curve (AUC). Studies primarily based on wearable devices were excluded. Methodological quality and risk of bias were evaluated using the PROBAST tool.

Results: Of 447 records, 26 met inclusion criteria. Common algorithms included decision trees, support vector machines, and neural networks, frequently using variables such as age, BMI, neck circumference, and comorbidities. AUC values ranged from 0.62 to 0.93, with most exceeding 0.80. Research output increased substantially between 2021 and 2024. Methodological heterogeneity and limited external validation hindered comparability. Exclusion of incomplete cases was a recurrent issue.

Conclusions: AI models show potential for improving OSA detection, but methodological limitations restrict generalizability. Future studies should prioritize external validation, diverse populations, and adherence to standardized reporting frameworks to enable clinical translation.

Protocol registration: https://www.crd.york.ac.uk/PROSPERO/view/CRD420251025868 identifier is CRD420251025868.

基于临床和人口统计数据的人工智能在阻塞性睡眠呼吸暂停检测中的应用:系统综述。
人工智能(AI)在利用临床和人口统计数据加强阻塞性睡眠呼吸暂停(OSA)的检测和分层方面显示出了希望。本系统综述评估了人工智能模型的有效性、方法质量和未来的研究需求。方法:根据PRISMA指南,对PubMed(2014-2024)进行系统检索,确定了使用临床/人口统计学数据应用人工智能检测或分层OSA的研究,并对多导睡眠图或心肺多导睡眠图进行验证,并报告曲线下面积(AUC)等性能指标。主要基于可穿戴设备的研究被排除在外。使用PROBAST工具评估方法学质量和偏倚风险。结果:447例中,26例符合纳入标准。常用的算法包括决策树、支持向量机和神经网络,经常使用诸如年龄、BMI、颈围和合并症等变量。AUC值在0.62 ~ 0.93之间,大部分超过0.80。研究产出在2021年至2024年间大幅增长。方法的异质性和有限的外部验证阻碍了可比性。排除不完整病例是一个反复出现的问题。结论:人工智能模型显示出改善OSA检测的潜力,但方法上的局限性限制了推广。未来的研究应优先考虑外部验证,多样化的人群,并遵守标准化的报告框架,以实现临床翻译。协议注册:https://www.crd.york.ac.uk/PROSPERO/view/CRD420251025868标识为CRD420251025868。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信