Quantum Speedups for Multiproposal MCMC.

IF 2.5 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Chin-Yi Lin, Kuo-Chin Chen, Philippe Lemey, Marc A Suchard, Andrew J Holbrook, Min-Hsiu Hsieh
{"title":"Quantum Speedups for Multiproposal MCMC.","authors":"Chin-Yi Lin, Kuo-Chin Chen, Philippe Lemey, Marc A Suchard, Andrew J Holbrook, Min-Hsiu Hsieh","doi":"10.1214/25-ba1546","DOIUrl":null,"url":null,"abstract":"<p><p>Multiproposal Markov chain Monte Carlo (MCMC) algorithms choose from multiple proposals to generate their next chain step in order to sample from challenging target distributions more efficiently. However, on classical machines, these algorithms require <math><mi>𝒪</mi> <mo>(</mo> <mi>P</mi> <mo>)</mo></math> target evaluations for each Markov chain step when choosing from <math><mi>P</mi></math> proposals. Recent work demonstrates the possibility of quadratic quantum speedups for one such multiproposal MCMC algorithm. After generating <math><mi>P</mi></math> proposals, this quantum parallel MCMC (QPMCMC) algorithm requires only <math><mi>𝒪</mi> <mo>(</mo> <msqrt><mi>P</mi></msqrt> <mo>)</mo></math> target evaluations at each step, outperforming its classical counterpart. However, generating <math><mi>P</mi></math> proposals using classical computers still requires <math><mi>𝒪</mi> <mo>(</mo> <mi>P</mi> <mo>)</mo></math> time complexity, resulting in the overall complexity of QPMCMC remaining <math><mi>𝒪</mi> <mo>(</mo> <mi>P</mi> <mo>)</mo></math> . Here, we present a new, faster quantum multiproposal MCMC strategy, QPMCMC2. With a specially designed Tjelmeland distribution that generates proposals close to the input state, QPMCMC2 requires only <math><mi>𝒪</mi> <mo>(</mo> <mn>1</mn> <mo>)</mo></math> target evaluations and <math><mi>𝒪</mi> <mo>(</mo> <mtext>log</mtext> <mspace></mspace> <mi>P</mi> <mo>)</mo></math> qubits when computing over a large number of proposals <math><mi>P</mi></math> . Unlike its slower predecessor, the QPMCMC2 Markov kernel (1) maintains detailed balance exactly and (2) is fully explicit for a large class of graphical models. We demonstrate this flexibility by applying QPMCMC2 to novel Ising-type models built on bacterial evolutionary networks and obtain significant speedups for Bayesian ancestral trait reconstruction for 248 observed salmonella bacteria.</p>","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/25-ba1546","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Multiproposal Markov chain Monte Carlo (MCMC) algorithms choose from multiple proposals to generate their next chain step in order to sample from challenging target distributions more efficiently. However, on classical machines, these algorithms require 𝒪 ( P ) target evaluations for each Markov chain step when choosing from P proposals. Recent work demonstrates the possibility of quadratic quantum speedups for one such multiproposal MCMC algorithm. After generating P proposals, this quantum parallel MCMC (QPMCMC) algorithm requires only 𝒪 ( P ) target evaluations at each step, outperforming its classical counterpart. However, generating P proposals using classical computers still requires 𝒪 ( P ) time complexity, resulting in the overall complexity of QPMCMC remaining 𝒪 ( P ) . Here, we present a new, faster quantum multiproposal MCMC strategy, QPMCMC2. With a specially designed Tjelmeland distribution that generates proposals close to the input state, QPMCMC2 requires only 𝒪 ( 1 ) target evaluations and 𝒪 ( log P ) qubits when computing over a large number of proposals P . Unlike its slower predecessor, the QPMCMC2 Markov kernel (1) maintains detailed balance exactly and (2) is fully explicit for a large class of graphical models. We demonstrate this flexibility by applying QPMCMC2 to novel Ising-type models built on bacterial evolutionary networks and obtain significant speedups for Bayesian ancestral trait reconstruction for 248 observed salmonella bacteria.

多提案MCMC的量子加速。
多提议马尔可夫链蒙特卡罗(MCMC)算法从多个提议中选择产生下一个链式步骤,以便更有效地从具有挑战性的目标分布中进行采样。然而,在经典机器上,当从P个建议中进行选择时,这些算法需要对每个马尔可夫链步骤进行 (P)目标评估。最近的工作证明了一种多提议MCMC算法的二次量子加速的可能性。在生成P个建议后,该量子并行MCMC (QPMCMC)算法每一步只需要进行 (P)个目标评估,优于经典算法。然而,使用经典计算机生成P个提议仍然需要时间复杂度,这导致QPMCMC的总体复杂度仍然为剩余的时间复杂度。在这里,我们提出了一种新的、更快的量子多提议MCMC策略,QPMCMC2。QPMCMC2采用特殊设计的Tjelmeland分布,生成接近输入状态的提议,在计算大量提议P时,只需要进行(1)个目标评估和 (log P)个量子比特。与它较慢的前身不同,QPMCMC2马尔可夫核(1)精确地保持了详细的平衡,(2)对于大型图形模型是完全显式的。我们通过将QPMCMC2应用于基于细菌进化网络的新型issing型模型,证明了这种灵活性,并获得了248种观察到的沙门氏菌的贝叶斯祖先特征重建的显着速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信