Machine Learning-Based Classification of White Matter Functional Changes in Stroke Patients Using Resting-State fMRI.

IF 2.9 3区 医学 Q3 CLINICAL NEUROLOGY
Li-Hua Liu, Chao-Xiong Wang, Xin Huang, Ri-Bo Chen
{"title":"Machine Learning-Based Classification of White Matter Functional Changes in Stroke Patients Using Resting-State fMRI.","authors":"Li-Hua Liu, Chao-Xiong Wang, Xin Huang, Ri-Bo Chen","doi":"10.1007/s10548-025-01138-7","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroimaging studies of brain function are important research methods widely applied to stroke patients. Currently, a large number of studies have focused on functional imaging of the gray matter cortex. Relevant research indicates that certain areas of the gray matter cortex in stroke patients exhibit abnormal brain activity during resting state. However, studies on brain function based on white matter remain insufficient. The changes in functional connectivity caused by stroke in white matter, as well as the repair or compensation mechanisms of white matter function after stroke, are still unclear. The aim of this study is to investigate and demonstrate the changes in brain functional connectivity activity in the white matter region of stroke patients. Revealing the recombination characteristics of white matter functional networks after stroke, providing potential biomarkers for rehabilitation therapy Provide new clinical insights for the rehabilitation and treatment of stroke patients. We recruited 36 stroke patients and 36 healthy controls for resting-state functional magnetic resonance imaging (rs-fMRI). Regional Homogeneity (ReHo) and Degree Centrality (DC), which are sensitive to white matter functional abnormalities, were selected as feature vectors. ReHo reflects local neuronal synchrony, while DC quantifies global network hub properties. The combination of both effectively characterizes functional changes in white matter. ReHo evaluates the functional consistency of different white matter regions by calculating the activity similarity between adjacent brain regions. Additionally, DC analysis of white matter was used to investigate the connectivity patterns and organizational principles of functional networks between white matter regions. This was achieved by calculating the number of connections in each brain region to identify changes in neural activation of white matter regions that significantly impact the brain network. Furthermore, ReHo and DC metrics were used as feature vectors for classification using machine learning algorithms. The results indicated significant differences in white matter DC and ReHo values between stroke patients and healthy controls. In the two-sample t-test analysis of white matter DC, stroke patients showed a significant reduction in DC values in the corpus callosum genu (GCC), corpus callosum body (BCC), and left anterior corona radiata (ACRL) regions (GCC: 0.143 vs. 1.024; BCC: 0.238 vs. 1.143; ACRL: 0.143 vs. 0.821, p < 0.001). However, an increase in DC values was observed in the left superior longitudinal fasciculus (SLF_L) region (1.190 vs. 0.190, p < 0.001). In the two-sample t-test analysis of white matter ReHo, stroke patients exhibited a decrease in ReHo values in the GCC and BCC regions (GCC: 0.859 vs. 1.375; BCC: 1.156 vs. 1.687, p < 0.001), indicating values lower than those in the healthy control group. Using leave-one-out cross-validation (LOOCV) to evaluate the white matter DC and ReHo feature values through SVM classification models for stroke patients and healthy controls, the DC classification AUC was 0.89, and the ReHo classification AUC reached 0.98. These results suggest that the features possess validity and discriminative power. These findings suggest alterations in functional connectivity in specific white matter regions following stroke. Specifically, we observed a weakening of functional connectivity in the genu of the corpus callosum (GCC), the body of the corpus callosum (BCC), and the left anterior corona radiata (ACR_L) regions, while compensatory functional connectivity was enhanced in the left superior longitudinal fasciculus (SLF_L) region. These findings reveal the reorganization characteristics of white matter functional networks after stroke, which may provide potential biomarkers for the rehabilitation treatment of stroke patients and offer new clinical insights for their rehabilitation and treatment.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 6","pages":"67"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01138-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuroimaging studies of brain function are important research methods widely applied to stroke patients. Currently, a large number of studies have focused on functional imaging of the gray matter cortex. Relevant research indicates that certain areas of the gray matter cortex in stroke patients exhibit abnormal brain activity during resting state. However, studies on brain function based on white matter remain insufficient. The changes in functional connectivity caused by stroke in white matter, as well as the repair or compensation mechanisms of white matter function after stroke, are still unclear. The aim of this study is to investigate and demonstrate the changes in brain functional connectivity activity in the white matter region of stroke patients. Revealing the recombination characteristics of white matter functional networks after stroke, providing potential biomarkers for rehabilitation therapy Provide new clinical insights for the rehabilitation and treatment of stroke patients. We recruited 36 stroke patients and 36 healthy controls for resting-state functional magnetic resonance imaging (rs-fMRI). Regional Homogeneity (ReHo) and Degree Centrality (DC), which are sensitive to white matter functional abnormalities, were selected as feature vectors. ReHo reflects local neuronal synchrony, while DC quantifies global network hub properties. The combination of both effectively characterizes functional changes in white matter. ReHo evaluates the functional consistency of different white matter regions by calculating the activity similarity between adjacent brain regions. Additionally, DC analysis of white matter was used to investigate the connectivity patterns and organizational principles of functional networks between white matter regions. This was achieved by calculating the number of connections in each brain region to identify changes in neural activation of white matter regions that significantly impact the brain network. Furthermore, ReHo and DC metrics were used as feature vectors for classification using machine learning algorithms. The results indicated significant differences in white matter DC and ReHo values between stroke patients and healthy controls. In the two-sample t-test analysis of white matter DC, stroke patients showed a significant reduction in DC values in the corpus callosum genu (GCC), corpus callosum body (BCC), and left anterior corona radiata (ACRL) regions (GCC: 0.143 vs. 1.024; BCC: 0.238 vs. 1.143; ACRL: 0.143 vs. 0.821, p < 0.001). However, an increase in DC values was observed in the left superior longitudinal fasciculus (SLF_L) region (1.190 vs. 0.190, p < 0.001). In the two-sample t-test analysis of white matter ReHo, stroke patients exhibited a decrease in ReHo values in the GCC and BCC regions (GCC: 0.859 vs. 1.375; BCC: 1.156 vs. 1.687, p < 0.001), indicating values lower than those in the healthy control group. Using leave-one-out cross-validation (LOOCV) to evaluate the white matter DC and ReHo feature values through SVM classification models for stroke patients and healthy controls, the DC classification AUC was 0.89, and the ReHo classification AUC reached 0.98. These results suggest that the features possess validity and discriminative power. These findings suggest alterations in functional connectivity in specific white matter regions following stroke. Specifically, we observed a weakening of functional connectivity in the genu of the corpus callosum (GCC), the body of the corpus callosum (BCC), and the left anterior corona radiata (ACR_L) regions, while compensatory functional connectivity was enhanced in the left superior longitudinal fasciculus (SLF_L) region. These findings reveal the reorganization characteristics of white matter functional networks after stroke, which may provide potential biomarkers for the rehabilitation treatment of stroke patients and offer new clinical insights for their rehabilitation and treatment.

基于机器学习的脑卒中患者脑白质功能变化分类研究
脑功能的神经影像学研究是广泛应用于脑卒中患者的重要研究方法。目前,大量的研究都集中在灰质皮层的功能成像上。相关研究表明,脑卒中患者脑灰质皮层的某些区域在静息状态下表现出异常的脑活动。然而,基于白质的脑功能研究仍然不足。脑卒中后脑白质功能连通性的改变以及脑卒中后脑白质功能的修复或补偿机制尚不清楚。本研究旨在探讨脑卒中患者脑白质区功能连接活动的变化。揭示脑卒中后白质功能网络的重组特征,为康复治疗提供潜在的生物标志物,为脑卒中患者的康复治疗提供新的临床见解。我们招募了36名脑卒中患者和36名健康对照者进行静息状态功能磁共振成像(rs-fMRI)。选取对白质功能异常敏感的区域均匀性(ReHo)和度中心性(DC)作为特征向量。ReHo反映局部神经元同步,而DC量化全局网络集线器属性。两者的结合有效地表征了白质的功能变化。ReHo通过计算相邻脑区之间的活动相似性来评估不同白质区域的功能一致性。此外,利用脑白质直流分析研究脑白质区域间功能网络的连接模式和组织原理。这是通过计算每个大脑区域的连接数量来确定显著影响大脑网络的白质区域的神经激活变化来实现的。此外,使用ReHo和DC指标作为特征向量,使用机器学习算法进行分类。结果显示脑卒中患者与健康对照组脑白质DC和ReHo值存在显著差异。在白质DC的双样本t检验分析中,脑卒中患者在胼胝体(GCC)、胼胝体(BCC)和左前辐射冠(ACRL)区域的DC值显著降低(GCC: 0.143 vs. 1.024; BCC: 0.238 vs. 1.143; ACRL: 0.143 vs. 0.821, p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信