Naphthoquinone preferentially pairs with non-proton-pumping NADH dehydrogenase for respiratory electron transport.

IF 3.7 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2025-09-24 eCollection Date: 2025-09-01 DOI:10.1371/journal.pgen.1011877
Snehal V Khairnar, Anjali V Patil, L Karvannan, Amitesh Anand
{"title":"Naphthoquinone preferentially pairs with non-proton-pumping NADH dehydrogenase for respiratory electron transport.","authors":"Snehal V Khairnar, Anjali V Patil, L Karvannan, Amitesh Anand","doi":"10.1371/journal.pgen.1011877","DOIUrl":null,"url":null,"abstract":"<p><p>Optimal resource allocation is crucial to bacterial physiology and necessitates strategic metabolic decisions. One such evolutionary adaptation was the shift to high-potential respiratory chains following Earth's Great Oxidation Event. Respiratory quinones, key redox-active electron carrier molecules, evolved from naphthoquinones (NQs) to ubiquinones (UQs) in response to oxygen availability. The two quinone types differ in their redox potential, with UQs possessing higher potential. Therefore, NQs are more autooxidizable and electron-leaky than UQs. Using adaptive laboratory evolution of a NQ-dependent Escherichia coli strain, we previously showed the fitness advantage of high-potential quinones. Here, we resolve a paradoxical growth benefit conferred by the loss of function of the pyruvate dehydrogenase complex regulator, revealing that NQs preferentially pair with the non-proton-pumping NADH dehydrogenase, thereby optimizing electron transport in low-potential respiratory chains under aerobic conditions.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 9","pages":"e1011877"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510636/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011877","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Optimal resource allocation is crucial to bacterial physiology and necessitates strategic metabolic decisions. One such evolutionary adaptation was the shift to high-potential respiratory chains following Earth's Great Oxidation Event. Respiratory quinones, key redox-active electron carrier molecules, evolved from naphthoquinones (NQs) to ubiquinones (UQs) in response to oxygen availability. The two quinone types differ in their redox potential, with UQs possessing higher potential. Therefore, NQs are more autooxidizable and electron-leaky than UQs. Using adaptive laboratory evolution of a NQ-dependent Escherichia coli strain, we previously showed the fitness advantage of high-potential quinones. Here, we resolve a paradoxical growth benefit conferred by the loss of function of the pyruvate dehydrogenase complex regulator, revealing that NQs preferentially pair with the non-proton-pumping NADH dehydrogenase, thereby optimizing electron transport in low-potential respiratory chains under aerobic conditions.

萘醌优先与非质子泵送NADH脱氢酶配对,用于呼吸电子传递。
最佳资源分配对细菌生理至关重要,需要战略性代谢决策。其中一种进化适应是地球大氧化事件后向高电位呼吸链的转变。呼吸醌是一种重要的氧化还原活性电子载体分子,在氧可用性条件下由萘醌(NQs)进化为泛醌(UQs)。两种醌的氧化还原电位不同,UQs具有较高的氧化还原电位。因此,nq比uq更容易自氧化和电子泄漏。利用依赖nq的大肠杆菌菌株的适应性实验室进化,我们之前展示了高电位醌的适应度优势。在这里,我们解决了丙酮酸脱氢酶复合体调节因子功能丧失所带来的一个矛盾的生长益处,揭示了nq优先与非质子泵送NADH脱氢酶结合,从而优化了有氧条件下低电位呼吸链中的电子传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信