An accelerated preconditioned proximal gradient algorithm with a generalized Nesterov momentum for PET image reconstruction.

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Inverse Problems Pub Date : 2025-04-01 Epub Date: 2025-03-14 DOI:10.1088/1361-6420/adbd6a
Yizun Lin, Yongxin He, C Ross Schmidtlein, Deren Han
{"title":"An accelerated preconditioned proximal gradient algorithm with a generalized Nesterov momentum for PET image reconstruction.","authors":"Yizun Lin, Yongxin He, C Ross Schmidtlein, Deren Han","doi":"10.1088/1361-6420/adbd6a","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents an accelerated preconditioned proximal gradient algorithm (APPGA) for effectively solving a class of positron emission tomography (PET) image reconstruction models with differentiable regularizers. We establish the convergence of APPGA with the generalized Nesterov (GN) momentum scheme, demonstrating its ability to converge to a minimizer of the objective function with rates of <math><mi>o</mi> <mfenced><mrow><mn>1</mn> <mo>/</mo> <msup><mrow><mi>k</mi></mrow> <mrow><mn>2</mn> <mi>ω</mi></mrow> </msup> </mrow> </mfenced> </math> and <math><mi>o</mi> <mfenced><mrow><mn>1</mn> <mo>/</mo> <msup><mrow><mi>k</mi></mrow> <mrow><mi>ω</mi></mrow> </msup> </mrow> </mfenced> </math> in terms of the function value and the distance between consecutive iterates, respectively, where <math><mi>ω</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo></math> is the power parameter of the GN momentum. To achieve an efficient algorithm with high-order convergence rate for the higher-order isotropic total variation (ITV) regularized PET image reconstruction model, we replace the ITV term by its smoothed version and subsequently apply APPGA to solve the smoothed model. Numerical results presented in this work indicate that as <math><mi>ω</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo></math> increase, APPGA converges at a progressively faster rate. Furthermore, APPGA exhibits superior performance compared to the preconditioned proximal gradient algorithm and the preconditioned Krasnoselskii-Mann algorithm. The extension of the GN momentum technique for solving a more complex optimization model with multiple nondifferentiable terms is also discussed.</p>","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"41 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456403/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/adbd6a","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an accelerated preconditioned proximal gradient algorithm (APPGA) for effectively solving a class of positron emission tomography (PET) image reconstruction models with differentiable regularizers. We establish the convergence of APPGA with the generalized Nesterov (GN) momentum scheme, demonstrating its ability to converge to a minimizer of the objective function with rates of o 1 / k 2 ω and o 1 / k ω in terms of the function value and the distance between consecutive iterates, respectively, where ω ( 0 , 1 ] is the power parameter of the GN momentum. To achieve an efficient algorithm with high-order convergence rate for the higher-order isotropic total variation (ITV) regularized PET image reconstruction model, we replace the ITV term by its smoothed version and subsequently apply APPGA to solve the smoothed model. Numerical results presented in this work indicate that as ω ( 0 , 1 ] increase, APPGA converges at a progressively faster rate. Furthermore, APPGA exhibits superior performance compared to the preconditioned proximal gradient algorithm and the preconditioned Krasnoselskii-Mann algorithm. The extension of the GN momentum technique for solving a more complex optimization model with multiple nondifferentiable terms is also discussed.

基于广义Nesterov动量的PET图像重构加速预条件近端梯度算法。
本文提出了一种加速预条件近端梯度算法(APPGA),用于有效求解一类带有可微正则子的正电子发射断层扫描(PET)图像重建模型。我们用广义Nesterov (GN)动量格式建立了APPGA的收敛性,证明了其收敛速度分别为0 1 / k 2 ω和0 1 / k ω的目标函数的最小值,其中ω∈(0,1]是GN动量的幂参数。为了实现高阶各向同性总变分(ITV)正则化PET图像重建模型的高阶收敛率算法,我们将ITV项替换为其平滑版本,然后应用APPGA对平滑模型进行求解。本文的数值结果表明,随着ω∈(0,1)的增大,APPGA的收敛速度逐渐加快。此外,与预条件近端梯度算法和预条件Krasnoselskii-Mann算法相比,APPGA表现出更优越的性能。讨论了GN动量技术在求解具有多个不可微项的更复杂优化模型中的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inverse Problems
Inverse Problems 数学-物理:数学物理
CiteScore
4.40
自引率
14.30%
发文量
115
审稿时长
2.3 months
期刊介绍: An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution. As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others. The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信