Virus-like particles as modular interfaces for biomaterial functionalization.

IF 14.9 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hasna Maayouf, Rayane Hedna, Alphonse Boché, Thomas Dos Santos, Kaspars Tārs, Isabelle Brigaud, Tatiana Petithory, Franck Carreiras, Carole Arnold, Ambroise Lambert, Laurent Pieuchot
{"title":"Virus-like particles as modular interfaces for biomaterial functionalization.","authors":"Hasna Maayouf, Rayane Hedna, Alphonse Boché, Thomas Dos Santos, Kaspars Tārs, Isabelle Brigaud, Tatiana Petithory, Franck Carreiras, Carole Arnold, Ambroise Lambert, Laurent Pieuchot","doi":"10.1016/j.tibtech.2025.08.017","DOIUrl":null,"url":null,"abstract":"<p><p>Biomaterial surface biofunctionalization refers to the process of modifying a biomaterial's surface to improve its interaction with biological systems. Controlling cell-material interactions is crucial, but current methods using native extracellular matrix (ECM) proteins, typically derived from human or animal tissue, or synthetic peptides are hampered by limitations such as batch variability, high cost, poor surface adsorption, and limited control over peptide presentation. This study introduces a technology that uses virus-like particles (VLPs) displaying biomimetic ECM-derived peptides. We engineered VLPs to present the RGD motif (arginine-glycine-aspartic acid), a well-established sequence that promotes cell adhesion, using either direct genetic fusion or SpyTag/SpyCatcher ligation, with the latter providing a more versatile conjugation strategy. These VLPs effectively functionalized cell-repellent silicone surfaces, significantly enhancing cell adhesion, migration, proliferation, and differentiation, achieving performance comparable with or exceeding that of native ECM proteins or synthetic RGD peptides. Additionally, the VLP/SpyCatcher particle enabled the co-presentation of multiple bioactive peptides, opening avenues for complex tissue engineering strategies. This tunable system represents a powerful tool for directing cell behavior, with significant potential for advancing nanomedicine and biomaterials development.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.08.017","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomaterial surface biofunctionalization refers to the process of modifying a biomaterial's surface to improve its interaction with biological systems. Controlling cell-material interactions is crucial, but current methods using native extracellular matrix (ECM) proteins, typically derived from human or animal tissue, or synthetic peptides are hampered by limitations such as batch variability, high cost, poor surface adsorption, and limited control over peptide presentation. This study introduces a technology that uses virus-like particles (VLPs) displaying biomimetic ECM-derived peptides. We engineered VLPs to present the RGD motif (arginine-glycine-aspartic acid), a well-established sequence that promotes cell adhesion, using either direct genetic fusion or SpyTag/SpyCatcher ligation, with the latter providing a more versatile conjugation strategy. These VLPs effectively functionalized cell-repellent silicone surfaces, significantly enhancing cell adhesion, migration, proliferation, and differentiation, achieving performance comparable with or exceeding that of native ECM proteins or synthetic RGD peptides. Additionally, the VLP/SpyCatcher particle enabled the co-presentation of multiple bioactive peptides, opening avenues for complex tissue engineering strategies. This tunable system represents a powerful tool for directing cell behavior, with significant potential for advancing nanomedicine and biomaterials development.

类病毒颗粒作为生物材料功能化的模块化界面。
生物材料表面生物功能化是指修饰生物材料表面以改善其与生物系统相互作用的过程。控制细胞-物质相互作用是至关重要的,但目前使用天然细胞外基质(ECM)蛋白(通常来自人类或动物组织)或合成肽的方法受到诸如批次可变性、高成本、表面吸附差和对肽表现控制有限等限制的阻碍。本研究介绍了一种利用病毒样颗粒(vlp)显示仿生ecm衍生肽的技术。我们设计了VLPs来呈现RGD基序(精氨酸-甘氨酸-天冬氨酸),这是一个完善的序列,可以促进细胞粘附,使用直接遗传融合或SpyTag/SpyCatcher连接,后者提供了更通用的结合策略。这些VLPs有效地功能化了细胞排斥的硅酮表面,显著增强了细胞的粘附、迁移、增殖和分化,达到了与天然ECM蛋白或合成RGD肽相当或超过的性能。此外,VLP/SpyCatcher颗粒使多种生物活性肽能够共同呈现,为复杂的组织工程策略开辟了道路。这种可调系统代表了指导细胞行为的强大工具,具有推进纳米医学和生物材料发展的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信