Applications of deep learning in the analysis of optical coherence tomography images for glaucoma-related diagnostics.

IF 1.2 Q4 OPHTHALMOLOGY
Taiwan Journal of Ophthalmology Pub Date : 2025-07-18 eCollection Date: 2025-07-01 DOI:10.4103/tjo.TJO-D-24-00162
Kyle Bolo, Benjamin Y Xu
{"title":"Applications of deep learning in the analysis of optical coherence tomography images for glaucoma-related diagnostics.","authors":"Kyle Bolo, Benjamin Y Xu","doi":"10.4103/tjo.TJO-D-24-00162","DOIUrl":null,"url":null,"abstract":"<p><p>Glaucoma is an optic neuropathy and the leading cause of irreversible blindness worldwide. Imaging of the ganglion cell complex and retinal nerve fiber layer with optical coherence tomography (OCT) is a noninvasive, high-resolution means of diagnosing and quantitatively monitoring glaucoma. In the anterior segment, OCT can also be used to assess the anterior chamber angle and identify angle closure, a risk factor for glaucoma. The interpretation of OCT images for accurate diagnosis requires expert-level knowledge of both the technology and glaucoma. Deep learning (DL) is a subfield of artificial intelligence (AI), which is gaining prominence in health care for its ability to interpret images and approximate clinician judgment. This review summarizes recent research that demonstrates how DL can contribute to the analysis of OCT images in glaucoma. Deep neural networks can assist clinicians in checking the quality of OCT scans, quantifying the thickness of optic nerve tissues, evaluating the anterior chamber angle, diagnosing glaucoma, and detecting the progression of existing glaucoma. As further work expands on the generalizability, equity, and explainability of these DL techniques, AI-driven clinical support tools may become available for glaucoma diagnostics.</p>","PeriodicalId":44978,"journal":{"name":"Taiwan Journal of Ophthalmology","volume":"15 3","pages":"354-363"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwan Journal of Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/tjo.TJO-D-24-00162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glaucoma is an optic neuropathy and the leading cause of irreversible blindness worldwide. Imaging of the ganglion cell complex and retinal nerve fiber layer with optical coherence tomography (OCT) is a noninvasive, high-resolution means of diagnosing and quantitatively monitoring glaucoma. In the anterior segment, OCT can also be used to assess the anterior chamber angle and identify angle closure, a risk factor for glaucoma. The interpretation of OCT images for accurate diagnosis requires expert-level knowledge of both the technology and glaucoma. Deep learning (DL) is a subfield of artificial intelligence (AI), which is gaining prominence in health care for its ability to interpret images and approximate clinician judgment. This review summarizes recent research that demonstrates how DL can contribute to the analysis of OCT images in glaucoma. Deep neural networks can assist clinicians in checking the quality of OCT scans, quantifying the thickness of optic nerve tissues, evaluating the anterior chamber angle, diagnosing glaucoma, and detecting the progression of existing glaucoma. As further work expands on the generalizability, equity, and explainability of these DL techniques, AI-driven clinical support tools may become available for glaucoma diagnostics.

Abstract Image

深度学习在青光眼相关诊断的光学相干断层成像分析中的应用。
青光眼是一种视神经病变,是世界范围内导致不可逆失明的主要原因。光学相干断层扫描(OCT)对神经节细胞复合体和视网膜神经纤维层的成像是一种无创、高分辨率的青光眼诊断和定量监测手段。在前节段,OCT也可以用来评估前房角度和识别角关闭,这是青光眼的危险因素。准确诊断OCT图像的解释需要专家水平的技术和青光眼知识。深度学习(DL)是人工智能(AI)的一个子领域,由于其解释图像和近似临床医生判断的能力,在医疗保健领域日益突出。这篇综述总结了最近的研究,证明DL如何有助于青光眼OCT图像的分析。深度神经网络可以帮助临床医生检查OCT扫描的质量,量化视神经组织的厚度,评估前房角,诊断青光眼,检测现有青光眼的进展。随着对这些深度学习技术的普遍性、公平性和可解释性的进一步研究,人工智能驱动的临床支持工具可能会用于青光眼诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
9.10%
发文量
68
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信