Transition graphs of interacting hysterons: structure, design, organization and statistics.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-09-24 eCollection Date: 2025-09-01 DOI:10.1098/rsos.250753
Margot Teunisse, Martin van Hecke
{"title":"Transition graphs of interacting hysterons: structure, design, organization and statistics.","authors":"Margot Teunisse, Martin van Hecke","doi":"10.1098/rsos.250753","DOIUrl":null,"url":null,"abstract":"<p><p>Transition graphs capture the memory and sequential response of multistable media, by specifying their evolution under external driving. Microscopically, collections of bistable elements, or hysterons, provide a powerful model for these materials, with recent work highlighting the crucial role of hysteron interactions. Here, we introduce a general framework that links transition graphs and the microscopic parameters of interacting hysterons. We first introduce a systematic framework, based on so-called scaffolds, which structures the space of transition graphs and provides tools to deal with their combinatorial explosion. We then connect the topology of transition graphs to partial orders of the microscopic parameters. This allows us to understand the statistical properties of transition graphs, as well as determine whether a given graph is realizable, i.e. compatible with the hysteron framework. Our approach paves the way for a deeper theoretical understanding of memory effects in complex media and opens a route to rationally design pathways and memory effects in materials.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 9","pages":"250753"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12457013/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.250753","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Transition graphs capture the memory and sequential response of multistable media, by specifying their evolution under external driving. Microscopically, collections of bistable elements, or hysterons, provide a powerful model for these materials, with recent work highlighting the crucial role of hysteron interactions. Here, we introduce a general framework that links transition graphs and the microscopic parameters of interacting hysterons. We first introduce a systematic framework, based on so-called scaffolds, which structures the space of transition graphs and provides tools to deal with their combinatorial explosion. We then connect the topology of transition graphs to partial orders of the microscopic parameters. This allows us to understand the statistical properties of transition graphs, as well as determine whether a given graph is realizable, i.e. compatible with the hysteron framework. Our approach paves the way for a deeper theoretical understanding of memory effects in complex media and opens a route to rationally design pathways and memory effects in materials.

Abstract Image

Abstract Image

Abstract Image

交互迟滞子的过渡图:结构、设计、组织和统计。
过渡图通过指定多稳定介质在外部驱动下的演变来捕获它们的内存和顺序响应。微观上,双稳态元素的集合,或称滞子,为这些材料提供了一个强大的模型,最近的工作强调了滞子相互作用的关键作用。在这里,我们引入了一个连接跃迁图和相互作用的滞子微观参数的一般框架。我们首先介绍了一个系统框架,基于所谓的脚手架,它构造了过渡图的空间,并提供了处理它们的组合爆炸的工具。然后,我们将过渡图的拓扑结构与微观参数的偏阶联系起来。这使我们能够理解过渡图的统计性质,以及确定给定图是否可实现,即与滞子框架兼容。我们的方法为更深入地从理论上理解复杂介质中的记忆效应铺平了道路,并为合理设计材料中的通路和记忆效应开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信