{"title":"Prokaryotic evolution shapes specialized communities in long term engineered pit mud ecosystem.","authors":"Yan Zeng, Xiaozhong Zhong, Lijuan Chai, Xiaojuan Zhang, Zhenming Lu, Guangqian Liu, Tingyao Tu, Lingfei Lu, Rui Zhang, Hui Yu, Suyi Zhang, Songtao Wang, Caihong Shen, Jinsong Shi, Zhenghong Xu","doi":"10.1038/s41522-025-00805-8","DOIUrl":null,"url":null,"abstract":"<p><p>Elucidating the temporal dynamics of complex microbial consortia is crucial for engineering robust microbiome. We investigated prokaryotic evolution in pit mud, a centuries-old engineered environment used in Chinese liquor fermentation. Metagenomic analysis of 120 pit mud samples across different ages revealed a transition from generalist-dominated to specialist-enriched communities. This shift was characterized by decreased hydrolytic potential and increased organic acid metabolism, with key taxonomic changes including declines in Proteiniphilum and Petrimonas, and increases in Methanobacterium and Caproicibacter. The mature specialist community accelerates the short-chain organic acids turnover through syntrophic fatty acid oxidation, methanogenesis, and carbon chain elongation, maintaining ecosystem stability. While nutrient availability primarily shapes early stages community interactions, environmental stress becomes a dominant factor in mature systems. These insights into long-term prokaryotic adaptation provide a foundation for the rational design of resilient, functionally optimized microbial communities for biotechnological applications.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"186"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460881/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00805-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Elucidating the temporal dynamics of complex microbial consortia is crucial for engineering robust microbiome. We investigated prokaryotic evolution in pit mud, a centuries-old engineered environment used in Chinese liquor fermentation. Metagenomic analysis of 120 pit mud samples across different ages revealed a transition from generalist-dominated to specialist-enriched communities. This shift was characterized by decreased hydrolytic potential and increased organic acid metabolism, with key taxonomic changes including declines in Proteiniphilum and Petrimonas, and increases in Methanobacterium and Caproicibacter. The mature specialist community accelerates the short-chain organic acids turnover through syntrophic fatty acid oxidation, methanogenesis, and carbon chain elongation, maintaining ecosystem stability. While nutrient availability primarily shapes early stages community interactions, environmental stress becomes a dominant factor in mature systems. These insights into long-term prokaryotic adaptation provide a foundation for the rational design of resilient, functionally optimized microbial communities for biotechnological applications.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.