Two-point B1 correction for CEST MRI by fusing voxel-wise interpolation and T1W voxel-clustering.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yifan Li, Wenxuan Chen, Yi Wang, Xiaolei Song
{"title":"Two-point B<sub>1</sub> correction for CEST MRI by fusing voxel-wise interpolation and T<sub>1</sub>W voxel-clustering.","authors":"Yifan Li, Wenxuan Chen, Yi Wang, Xiaolei Song","doi":"10.1002/mrm.70102","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>As a sensitive metabolic MRI technique, CEST images are easily contaminated by <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> inhomogeneity due to strong dependence on saturation <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> . We aim to develop an efficient and robust two-point <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> -correction method.</p><p><strong>Methods: </strong>The proposed method only acquires CEST images under two saturation <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> 's, { <math> <semantics> <mrow><msub><mi>B</mi> <mrow><mn>1</mn> <mo>,</mo> <mtext>high</mtext></mrow> </msub> </mrow> <annotation>$$ {\\mathrm{B}}_{1,\\mathrm{high}} $$</annotation></semantics> </math> , <math> <semantics> <mrow><msub><mi>B</mi> <mrow><mn>1</mn> <mo>,</mo> <mi>low</mi></mrow> </msub> </mrow> <annotation>$$ {\\mathrm{B}}_{1,\\mathrm{low}} $$</annotation></semantics> </math> }, with desired <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> in between. Besides, voxel-wise Z- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> interpolation (branch A), we performed another Z- <math> <semantics> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{T}}_1 $$</annotation></semantics> </math> - <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> calibration (branch B), which divided image voxels into bins according to the <math> <semantics> <mrow><msub><mi>T</mi> <mn>1</mn></msub> <mi>w</mi></mrow> <annotation>$$ {\\mathrm{T}}_1\\mathrm{w} $$</annotation></semantics> </math> image and fitted a Z- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> curve for each bin. To ensure each voxel adopts a better-corrected value, we fused the images corrected from both branches, according to a mask predicted by a retrospectively trained model. For validation, glutamate CEST (GluCEST) experiments of phantom and healthy volunteers were acquired on a 5T scanner. A total of 14 <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> pairs from 2.4μT to 3.6μT were evaluated, with the 7- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> -correction as gold standard.</p><p><strong>Results: </strong>Across glutamate phantoms with three distinct layouts, branch B demonstrated reliable correction performance for 14 <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> pairs, achieving a mean absolute error (MAE) of Z(3 ppm) ≤ 5% in all 42 experiments. For six healthy volunteers, branch B yielded Z(3 ppm) images that closely matched the 7- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> correction, and the MAE distributions proved robust to voxel-binning, fitting strategies, and the choice of <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> pair. After fusion, all volunteers displayed better structural similarity index measure (SSIM), than the lower ones corrected by either branch.</p><p><strong>Conclusions: </strong>By only acquiring two <math> <semantics> <mrow> <msup><msub><mi>B</mi> <mn>1</mn></msub> <mo>'</mo></msup> <mi>s</mi></mrow> <annotation>$$ {{\\mathrm{B}}_1}^{\\prime}\\mathrm{s} $$</annotation></semantics> </math> , our <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> -correction strategy proved comparable performance to multi- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> methods, exhibiting robustness to <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> selection and slice positions.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.70102","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: As a sensitive metabolic MRI technique, CEST images are easily contaminated by B 1 $$ {\mathrm{B}}_1 $$ inhomogeneity due to strong dependence on saturation B 1 $$ {\mathrm{B}}_1 $$ . We aim to develop an efficient and robust two-point B 1 $$ {\mathrm{B}}_1 $$ -correction method.

Methods: The proposed method only acquires CEST images under two saturation B 1 $$ {\mathrm{B}}_1 $$ 's, { B 1 , high $$ {\mathrm{B}}_{1,\mathrm{high}} $$ , B 1 , low $$ {\mathrm{B}}_{1,\mathrm{low}} $$ }, with desired B 1 $$ {\mathrm{B}}_1 $$ in between. Besides, voxel-wise Z- B 1 $$ {\mathrm{B}}_1 $$ interpolation (branch A), we performed another Z- T 1 $$ {\mathrm{T}}_1 $$ - B 1 $$ {\mathrm{B}}_1 $$ calibration (branch B), which divided image voxels into bins according to the T 1 w $$ {\mathrm{T}}_1\mathrm{w} $$ image and fitted a Z- B 1 $$ {\mathrm{B}}_1 $$ curve for each bin. To ensure each voxel adopts a better-corrected value, we fused the images corrected from both branches, according to a mask predicted by a retrospectively trained model. For validation, glutamate CEST (GluCEST) experiments of phantom and healthy volunteers were acquired on a 5T scanner. A total of 14 B 1 $$ {\mathrm{B}}_1 $$ pairs from 2.4μT to 3.6μT were evaluated, with the 7- B 1 $$ {\mathrm{B}}_1 $$ -correction as gold standard.

Results: Across glutamate phantoms with three distinct layouts, branch B demonstrated reliable correction performance for 14 B 1 $$ {\mathrm{B}}_1 $$ pairs, achieving a mean absolute error (MAE) of Z(3 ppm) ≤ 5% in all 42 experiments. For six healthy volunteers, branch B yielded Z(3 ppm) images that closely matched the 7- B 1 $$ {\mathrm{B}}_1 $$ correction, and the MAE distributions proved robust to voxel-binning, fitting strategies, and the choice of B 1 $$ {\mathrm{B}}_1 $$ pair. After fusion, all volunteers displayed better structural similarity index measure (SSIM), than the lower ones corrected by either branch.

Conclusions: By only acquiring two B 1 ' s $$ {{\mathrm{B}}_1}^{\prime}\mathrm{s} $$ , our B 1 $$ {\mathrm{B}}_1 $$ -correction strategy proved comparable performance to multi- B 1 $$ {\mathrm{B}}_1 $$ methods, exhibiting robustness to B 1 $$ {\mathrm{B}}_1 $$ selection and slice positions.

融合体素插值和T1W体素聚类的CEST MRI两点B1校正。
目的:CEST作为一种敏感的代谢MRI技术,由于对饱和度b1依赖性强$$ {\mathrm{B}}_1 $$,图像容易受到b1 $$ {\mathrm{B}}_1 $$不均匀性的污染。我们的目标是开发一种高效、鲁棒的两点b1 $$ {\mathrm{B}}_1 $$校正方法。方法:所提出的方法只获取两种饱和度b1 $$ {\mathrm{B}}_1 $$ s, b1,{高$$ {\mathrm{B}}_{1,\mathrm{high}} $$, b1,低$$ {\mathrm{B}}_{1,\mathrm{low}} $$下的CEST图像,}所需b1 $$ {\mathrm{B}}_1 $$介于两者之间。除了体素方向的Z- b1 $$ {\mathrm{B}}_1 $$插值(分支A)外,我们还进行了另一次Z- t1 $$ {\mathrm{T}}_1 $$ - b1 $$ {\mathrm{B}}_1 $$校准(分支B),该校准根据t1 w $$ {\mathrm{T}}_1\mathrm{w} $$图像将图像体素划分为bin,并为每个bin拟合Z- b1 $$ {\mathrm{B}}_1 $$曲线。为了确保每个体素采用更好的校正值,我们根据回顾性训练模型预测的掩模融合了从两个分支校正的图像。为了验证,在5T扫描仪上对幻影和健康志愿者进行了谷氨酸CEST (GluCEST)实验。以7- b1 $$ {\mathrm{B}}_1 $$校正为金标准,对2.4μT ~ 3.6μT范围内的14对b1 $$ {\mathrm{B}}_1 $$进行了评价。结果:在三种不同布局的谷氨酸幻像中,分支B对14对b1 $$ {\mathrm{B}}_1 $$表现出可靠的校正性能,平均绝对误差(MAE)为Z(3 ppm)≤5% in all 42 experiments. For six healthy volunteers, branch B yielded Z(3 ppm) images that closely matched the 7- B 1 $$ {\mathrm{B}}_1 $$ correction, and the MAE distributions proved robust to voxel-binning, fitting strategies, and the choice of B 1 $$ {\mathrm{B}}_1 $$ pair. After fusion, all volunteers displayed better structural similarity index measure (SSIM), than the lower ones corrected by either branch.Conclusions: By only acquiring two B 1 ' s $$ {{\mathrm{B}}_1}^{\prime}\mathrm{s} $$ , our B 1 $$ {\mathrm{B}}_1 $$ -correction strategy proved comparable performance to multi- B 1 $$ {\mathrm{B}}_1 $$ methods, exhibiting robustness to B 1 $$ {\mathrm{B}}_1 $$ selection and slice positions.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信