{"title":"Mitochondria-driven inflammation: a new frontier in ovarian ageing.","authors":"Wenhan Ju, Binghan Yan, Danping Li, Fang Lian, Shan Xiang","doi":"10.1186/s12967-025-06966-6","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian ageing is a key factor in the decline of female fertility. It is primarily characterised by diminished oocyte quality, follicular depletion, and dysregulated hormone levels. In recent years, mitochondria-driven inflammation has emerged as a potential mechanism in ovarian ageing. Mitochondrial dysfunction results in the accumulation of reactive oxygen species (ROS) and the release of mitochondrial DNA (mtDNA), as well as the leakage of mitochondrial components and metabolites into the cytosol or extracellular space. These elements act as damage-associated molecular patterns (DAMPs), activating inflammasomes like NLRP3, thereby initiating and amplifying innate immune responses and contributing to sustained inflammation. Furthermore, an imbalance in mitochondrial quality control mechanisms can worsen the spread and persistence of inflammatory responses. In this study, we present a comprehensive overview of the signalling origins, molecular mechanisms of amplification, and key regulatory nodes involved in mitochondria-driven inflammation during ovarian ageing. Finally, we summarise potential therapeutic strategies targeting mitochondria-driven inflammation, offering novel perspectives and targets for delaying ovarian ageing and enhancing female reproductive health.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"1005"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-06966-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian ageing is a key factor in the decline of female fertility. It is primarily characterised by diminished oocyte quality, follicular depletion, and dysregulated hormone levels. In recent years, mitochondria-driven inflammation has emerged as a potential mechanism in ovarian ageing. Mitochondrial dysfunction results in the accumulation of reactive oxygen species (ROS) and the release of mitochondrial DNA (mtDNA), as well as the leakage of mitochondrial components and metabolites into the cytosol or extracellular space. These elements act as damage-associated molecular patterns (DAMPs), activating inflammasomes like NLRP3, thereby initiating and amplifying innate immune responses and contributing to sustained inflammation. Furthermore, an imbalance in mitochondrial quality control mechanisms can worsen the spread and persistence of inflammatory responses. In this study, we present a comprehensive overview of the signalling origins, molecular mechanisms of amplification, and key regulatory nodes involved in mitochondria-driven inflammation during ovarian ageing. Finally, we summarise potential therapeutic strategies targeting mitochondria-driven inflammation, offering novel perspectives and targets for delaying ovarian ageing and enhancing female reproductive health.
期刊介绍:
The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.