Collagen Supplementation Augments Strength Training-Induced Gains in Tendon Size and Rate of Force Development in Elite Female Master Field Hockey Athletes.
{"title":"Collagen Supplementation Augments Strength Training-Induced Gains in Tendon Size and Rate of Force Development in Elite Female Master Field Hockey Athletes.","authors":"Christopher D Nulty, Robert M Erskine","doi":"10.1123/ijsnem.2025-0089","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the effects of 8-weeks of eccentric resistance exercise (RE) with hydrolyzed collagen supplementation on patellar tendon (PT) cross-sectional area (CSA), vastus lateralis (VL) muscle size, maximum voluntary force (MVF), and peak rate of force development (pRFD) in international female field hockey Master athletes. Twenty-two premenopausal women (37 ± 2 years, 68.9 ± 8.0 kg, and 1.68 ± 0.04 m) were randomly assigned to collagen (COL; n = 10) and placebo (PLA; n = 12) cohorts in a triple-blind design. They completed three eccentric RE sessions per week for 8 weeks in addition to their regular hockey training. Before each RE session, participants ingested 30 g hydrolyzed COL or 32.9 g maltodextrin (PLA), together with 500 mg vitamin C. Pre- and postintervention, we assessed MVF and pRFD during a voluntary multijoint isometric muscle contraction and countermovement jump height, and VL thickness and PT CSA were measured with ultrasonography. MVF increased from 892 ± 366 to 1,011 ± 420 N (p = .020) and VL thickness increased from 21 ± 3 to 22 ± 3 mm (p = .015), with no Group × Time interactions (p > .05), whereas countermovement jump height did not change (p = .238). PT CSA increased in both groups (p < .001) but more in COL (116 ± 12 to 121 ± 13 mm2) than PLA (109 ± 22 to 111 ± 22 mm2, p = .014). Similarly, pRFD increased in both groups (p = .002) but more in COL (7.9 ± 1.3 to 10.1 ± 2.4 kN/s) than PLA (8.2 ± 2.4 to 9.6 ± 2.9 kN/s, p = .039). Therefore, hydrolyzed collagen supplementation enhanced gains in PT CSA and pRFD following 8 weeks of eccentric RE in elite female field hockey Master athletes, thus providing an effective strategy to improve physical performance in this underresearched population.</p>","PeriodicalId":14334,"journal":{"name":"International journal of sport nutrition and exercise metabolism","volume":" ","pages":"1-10"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sport nutrition and exercise metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/ijsnem.2025-0089","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the effects of 8-weeks of eccentric resistance exercise (RE) with hydrolyzed collagen supplementation on patellar tendon (PT) cross-sectional area (CSA), vastus lateralis (VL) muscle size, maximum voluntary force (MVF), and peak rate of force development (pRFD) in international female field hockey Master athletes. Twenty-two premenopausal women (37 ± 2 years, 68.9 ± 8.0 kg, and 1.68 ± 0.04 m) were randomly assigned to collagen (COL; n = 10) and placebo (PLA; n = 12) cohorts in a triple-blind design. They completed three eccentric RE sessions per week for 8 weeks in addition to their regular hockey training. Before each RE session, participants ingested 30 g hydrolyzed COL or 32.9 g maltodextrin (PLA), together with 500 mg vitamin C. Pre- and postintervention, we assessed MVF and pRFD during a voluntary multijoint isometric muscle contraction and countermovement jump height, and VL thickness and PT CSA were measured with ultrasonography. MVF increased from 892 ± 366 to 1,011 ± 420 N (p = .020) and VL thickness increased from 21 ± 3 to 22 ± 3 mm (p = .015), with no Group × Time interactions (p > .05), whereas countermovement jump height did not change (p = .238). PT CSA increased in both groups (p < .001) but more in COL (116 ± 12 to 121 ± 13 mm2) than PLA (109 ± 22 to 111 ± 22 mm2, p = .014). Similarly, pRFD increased in both groups (p = .002) but more in COL (7.9 ± 1.3 to 10.1 ± 2.4 kN/s) than PLA (8.2 ± 2.4 to 9.6 ± 2.9 kN/s, p = .039). Therefore, hydrolyzed collagen supplementation enhanced gains in PT CSA and pRFD following 8 weeks of eccentric RE in elite female field hockey Master athletes, thus providing an effective strategy to improve physical performance in this underresearched population.
期刊介绍:
The International Journal of Sport Nutrition and Exercise Metabolism (IJSNEM) publishes original scientific investigations and scholarly reviews offering new insights into sport nutrition and exercise metabolism, as well as articles focusing on the application of the principles of biochemistry, physiology, and nutrition to sport and exercise. The journal also offers editorials, digests of related articles from other fields, research notes, and reviews of books, videos, and other media releases.
To subscribe to either the print or e-version of IJSNEM, press the Subscribe or Renew button at the top of your screen.