{"title":"Bioinspired 3D-printing strategies for skeletal tissue regeneration: From natural architectures to clinical applications.","authors":"Sahar Jelodari, Payam Baei, Majid Halvaei, Niloofar Hosseinpour, Mohsen Sheykhhasan, Samaneh Hosseini","doi":"10.1177/08853282251382716","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal tissues possess complicated structures and thereby their regeneration confronts considerable challenges. The final objective of skeletal tissue engineering is the development of efficient engineered substitutes in order to promote tissue regeneration. Numerous efforts have been made to develop functional biomimetic constructs with superior functions and characteristics to create advanced biomaterials for skeletal regeneration. One of the efficient approaches for designing bioinspired materials is mimicking the microstructure and architecture of natural living organisms and applying them in developing biomaterials with relevant functionality. Moreover, bioinspired complex structures which are developed by mimicking natural or synthetic architectures provide a crucial role in tissue engineering. Since the traditional approaches can not fulfill the demands to design intricate biomimetic materials, employing novel technologies may be satisfying. 3D bioprinting is a rapidly evolving technology which offers accurate multi-material and multi-scale manufacturing of biomimetic constructs for the patient-specific tissue regeneration. Numerous attempts such as mimicking the hierarchical structure and function of bone tissue, resembling the zonal architecture of cartilage tissue and imitating the microstructure and mechanical characteristics of natural osteochondral tissue, can suggest clinically desirable candidates for skeletal reconstruction. Here, 3D bioprinting technology for creating bioinspired constructs for use in skeletal tissue regeneration is discussed. We review various types of bioinspired constructs developed by mimicking the endogenous structure and function of skeletal tissues. Next, biomimetic constructs that are designed by imitating other natural and synthetic structures are discussed. Clinical trials utilizing 3D-printed constructs for skeletal tissue regeneration is discussed as the final part of the story. Different strategies such as mimicking strong adhesion to different surfaces, imitating the morphology of different architectures and resembling the hierarchical structure of natural and synthetic structures can expand the opportunity to develop realistic and effective constructs for clinical regeneration of skeletal tissue.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251382716"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251382716","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Skeletal tissues possess complicated structures and thereby their regeneration confronts considerable challenges. The final objective of skeletal tissue engineering is the development of efficient engineered substitutes in order to promote tissue regeneration. Numerous efforts have been made to develop functional biomimetic constructs with superior functions and characteristics to create advanced biomaterials for skeletal regeneration. One of the efficient approaches for designing bioinspired materials is mimicking the microstructure and architecture of natural living organisms and applying them in developing biomaterials with relevant functionality. Moreover, bioinspired complex structures which are developed by mimicking natural or synthetic architectures provide a crucial role in tissue engineering. Since the traditional approaches can not fulfill the demands to design intricate biomimetic materials, employing novel technologies may be satisfying. 3D bioprinting is a rapidly evolving technology which offers accurate multi-material and multi-scale manufacturing of biomimetic constructs for the patient-specific tissue regeneration. Numerous attempts such as mimicking the hierarchical structure and function of bone tissue, resembling the zonal architecture of cartilage tissue and imitating the microstructure and mechanical characteristics of natural osteochondral tissue, can suggest clinically desirable candidates for skeletal reconstruction. Here, 3D bioprinting technology for creating bioinspired constructs for use in skeletal tissue regeneration is discussed. We review various types of bioinspired constructs developed by mimicking the endogenous structure and function of skeletal tissues. Next, biomimetic constructs that are designed by imitating other natural and synthetic structures are discussed. Clinical trials utilizing 3D-printed constructs for skeletal tissue regeneration is discussed as the final part of the story. Different strategies such as mimicking strong adhesion to different surfaces, imitating the morphology of different architectures and resembling the hierarchical structure of natural and synthetic structures can expand the opportunity to develop realistic and effective constructs for clinical regeneration of skeletal tissue.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.