Skeleton-Based Continuous Scale Parkinsonian Gait Score Estimation Using Omni-Dimensional Self-Attention Convolution Networks

IF 5.2 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Haoyu Tian;Jun Ma;Yipeng Zhang;Lizhou Fan;Wenjing Jiang;Xin Ma;Yibin Li
{"title":"Skeleton-Based Continuous Scale Parkinsonian Gait Score Estimation Using Omni-Dimensional Self-Attention Convolution Networks","authors":"Haoyu Tian;Jun Ma;Yipeng Zhang;Lizhou Fan;Wenjing Jiang;Xin Ma;Yibin Li","doi":"10.1109/TNSRE.2025.3613967","DOIUrl":null,"url":null,"abstract":"Gait abnormalities constitute a primary motor symptom of Parkinson’s disease (PD). Clinically, the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) is widely recognized as the standard to evaluate gait impairment in PD. Recent skeleton-based methods have sought to estimate MDS-UPDRS gait scores, but most approaches treat score prediction as a coarse classification task, limiting their ability to capture subtle, progressive gait changes over time. These methods also often neglect clinical prior knowledge and fail to model localized gait features, leading to unsatisfactory performance. In addition, a continuous scale evaluation of gait impairment could result in a better formulation and adjustment of the treatment plan. In this paper, we introduce a novel framework for providing continuous-scale gait impairment estimation from the discrete annotation of MDS-UPDRS using skeleton data. First, we convert non-Euclidean skeleton information into two Euclidean spatiotemporal feature maps, ensuring a rigid spatial-temporal structure around the central joint. Next, we employ an omni-dimensional attention convolutional network to extract local spatiotemporal gait features within these normalized feature maps. We then integrate the features from both maps using an adaptive channel feature fusion module, capturing comprehensive gait information. Finally, we propose a numerical score prediction strategy that leverages MDS-UPDRS scores as anchors to predict gait impairment on a continuous scale without requiring continuous-scale annotations from clinicians. The effectiveness of the proposed approach is validated using a substantial clinical PD gait skeleton dataset.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"3845-3855"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11177571","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11177571/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gait abnormalities constitute a primary motor symptom of Parkinson’s disease (PD). Clinically, the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) is widely recognized as the standard to evaluate gait impairment in PD. Recent skeleton-based methods have sought to estimate MDS-UPDRS gait scores, but most approaches treat score prediction as a coarse classification task, limiting their ability to capture subtle, progressive gait changes over time. These methods also often neglect clinical prior knowledge and fail to model localized gait features, leading to unsatisfactory performance. In addition, a continuous scale evaluation of gait impairment could result in a better formulation and adjustment of the treatment plan. In this paper, we introduce a novel framework for providing continuous-scale gait impairment estimation from the discrete annotation of MDS-UPDRS using skeleton data. First, we convert non-Euclidean skeleton information into two Euclidean spatiotemporal feature maps, ensuring a rigid spatial-temporal structure around the central joint. Next, we employ an omni-dimensional attention convolutional network to extract local spatiotemporal gait features within these normalized feature maps. We then integrate the features from both maps using an adaptive channel feature fusion module, capturing comprehensive gait information. Finally, we propose a numerical score prediction strategy that leverages MDS-UPDRS scores as anchors to predict gait impairment on a continuous scale without requiring continuous-scale annotations from clinicians. The effectiveness of the proposed approach is validated using a substantial clinical PD gait skeleton dataset.
基于骨架的连续尺度帕金森步态评分全维自注意卷积网络估计。
步态异常是帕金森病(PD)的主要运动症状。在临床上,运动障碍学会统一帕金森病评定量表(MDS-UPDRS)被广泛认为是评估帕金森病步态障碍的标准。最近基于骨骼的方法试图估计MDS-UPDRS步态评分,但大多数方法将评分预测视为粗略分类任务,限制了它们捕捉细微的、随时间推移的步态变化的能力。这些方法往往忽略了临床先验知识,无法对局部步态特征进行建模,导致效果不理想。此外,对步态障碍进行持续的量表评估可以更好地制定和调整治疗计划。在本文中,我们引入了一个新的框架,利用骨骼数据从MDS-UPDRS的离散注释中提供连续尺度的步态损伤估计。首先,我们将非欧几里得骨架信息转换为两个欧几里得时空特征图,以确保中心关节周围的刚性时空结构。接下来,我们采用全维注意卷积网络在这些归一化特征映射中提取局部时空步态特征。然后,我们使用自适应通道特征融合模块整合两张地图的特征,捕获全面的步态信息。最后,我们提出了一种数值评分预测策略,该策略利用MDS-UPDRS评分作为锚点,在连续尺度上预测步态障碍,而不需要临床医生的连续尺度注释。使用大量临床PD步态骨架数据集验证了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信