{"title":"Benzimidazole Derivatives in Alzheimer's Therapy: Exploring Multi-Target Pathways.","authors":"Shantanu Gavade, Sonal Dubey, Prashant Tiwari","doi":"10.2174/0113892037387954250901202157","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a leading cause of dementia worldwide and continues to be one of the most frequently diagnosed neurodegenerative disorders in adults aged 65 and older. While much progress has been made in exploring AD pathophysiology, there remains no current cure, and symptomatic treatment is the current standard at best. As life expectancy continues to rise, the global prevalence of AD is increasing, making it evident that new therapeutic strategies are sorely needed. The etiology of AD is complex and heterogeneous, with cholinergic dysfunction, taurelated dysfunction, amyloid cascade dysfunction, oxidative dysfunction, and neuroinflammation all contributing to the unique pathology. As a result, researchers are focused on safe and effective drug candidates capable of addressing all of these interrelated mechanisms. One group of such multidrug candidates is benzimidazole derivatives, which target numerous molecular targets, such as, but not limited to, cyclin-dependent kinase 5 (CDK5), tau protein, acetylcholinesterase (AChE), betasecretase 1 (BACE1), serotonin receptor 5-HT4, cannabinoid receptor CB2R, and the gammaaminobutyric acid receptor A (GABA-A). This study reveals the multitargeting promise of benzimidazole- based compounds that regulate not just symptomatic pathways but also pathways that are responsible for modifying AD disease activity. Ongoing studies in this area may lead to the discovery of new drugs that can not only manage the symptoms but also change the trajectory of this serious disease and provide hope to millions of AD patients.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037387954250901202157","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a leading cause of dementia worldwide and continues to be one of the most frequently diagnosed neurodegenerative disorders in adults aged 65 and older. While much progress has been made in exploring AD pathophysiology, there remains no current cure, and symptomatic treatment is the current standard at best. As life expectancy continues to rise, the global prevalence of AD is increasing, making it evident that new therapeutic strategies are sorely needed. The etiology of AD is complex and heterogeneous, with cholinergic dysfunction, taurelated dysfunction, amyloid cascade dysfunction, oxidative dysfunction, and neuroinflammation all contributing to the unique pathology. As a result, researchers are focused on safe and effective drug candidates capable of addressing all of these interrelated mechanisms. One group of such multidrug candidates is benzimidazole derivatives, which target numerous molecular targets, such as, but not limited to, cyclin-dependent kinase 5 (CDK5), tau protein, acetylcholinesterase (AChE), betasecretase 1 (BACE1), serotonin receptor 5-HT4, cannabinoid receptor CB2R, and the gammaaminobutyric acid receptor A (GABA-A). This study reveals the multitargeting promise of benzimidazole- based compounds that regulate not just symptomatic pathways but also pathways that are responsible for modifying AD disease activity. Ongoing studies in this area may lead to the discovery of new drugs that can not only manage the symptoms but also change the trajectory of this serious disease and provide hope to millions of AD patients.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.