PGx-Based in silico Analyses Identifies the Interactive Role of Genes, Glucose Metabolism and Dopaminergic Dysfunctional Pathways with Chronic Cocaine use and Misuse.

IF 5.3 2区 医学 Q1 NEUROSCIENCES
Alireza Sharafshah, Panayotis K Thanos, Albert Pinhasov, Abdalla Bowirrat, Colin Hanna, Kai-Uwe Lewandrowski, Christopher Rowan, Igor Elman, Mark S Gold, Catherine A Dennen, Edward J Modestino, Rajendra D Badgaiyan, David Baron, Brian Fuehrlein, Ashim Gupta, Jean Lud Cadet, Aryeh R Pollack, Jag Khalsa, Milan Makale, Alexander Pl Lewandrowski, Kenneth Blum
{"title":"PGx-Based in silico Analyses Identifies the Interactive Role of Genes, Glucose Metabolism and Dopaminergic Dysfunctional Pathways with Chronic Cocaine use and Misuse.","authors":"Alireza Sharafshah, Panayotis K Thanos, Albert Pinhasov, Abdalla Bowirrat, Colin Hanna, Kai-Uwe Lewandrowski, Christopher Rowan, Igor Elman, Mark S Gold, Catherine A Dennen, Edward J Modestino, Rajendra D Badgaiyan, David Baron, Brian Fuehrlein, Ashim Gupta, Jean Lud Cadet, Aryeh R Pollack, Jag Khalsa, Milan Makale, Alexander Pl Lewandrowski, Kenneth Blum","doi":"10.2174/011570159X390146250831143523","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Our team conducted a pharmacogenomics (PGx) analysis to evaluate the interactions between cocaine, glucose metabolism, and functional connectivity using in-depth silico PGx methods.</p><p><strong>Methods: </strong>Utilizing PharmGKB, we extracted PGx annotations related to cocaine, glucose, and dopamine (raw data). After filtering, we refined a list of 49 unrepeated, brain-expressed genes and examined their interactions in a protein-protein interaction (PPI) network through STRING-MODEL, identifying top candidate genes.</p><p><strong>Results: </strong>Targeting key protein-coding genes with the highest connectivity, we identified COMT, DRD2, and SLC6A3, along with their 17 connected genes. A deep dive into gene-miRNA interactions (GMIs) using NetworkAnalyst revealed that COMT, DRD2, and hsa-miR-16-5p have multiple interactions with OPRM1 and BDNF. Enrichment analysis via Enrichr confirmed that this refined set of 17 impacts dopamine function and are interactive with dopaminergic pathways. Notably, Substance Use disorders (SUD) were the most significant manifestation predicted for the interplays among these genes.</p><p><strong>Discussion: </strong>Reviewing all PGx annotations for the 17 genes, we found 4,665 PGx entries, among which 1,970 were significant, with a p-value above 0.045. These were ultimately filtered down to 32 potential PGx annotations excluded in association with \"Cocaine,\" \"Glucose or Diabetes,\" and \"Dopamine\". Accordingly, 12 Pharmacogenes represented 32 PGx-associated with Cocaine, Glucose, and Dopamine, including DRD2, COMT, OPRD1, OPRM1, SLC6A3, CHRNA5, CNR1, CYP2C19, DBH, GABRA2, NOS1AP, and SYT1.</p><p><strong>Conclusion: </strong>This in silico PGx analysis demonstrates strong, validated connections based on prior published data and robust computational predictions. Among the findings, the COMT gene was found to be the best-scoring gene here.</p>","PeriodicalId":10905,"journal":{"name":"Current Neuropharmacology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/011570159X390146250831143523","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Our team conducted a pharmacogenomics (PGx) analysis to evaluate the interactions between cocaine, glucose metabolism, and functional connectivity using in-depth silico PGx methods.

Methods: Utilizing PharmGKB, we extracted PGx annotations related to cocaine, glucose, and dopamine (raw data). After filtering, we refined a list of 49 unrepeated, brain-expressed genes and examined their interactions in a protein-protein interaction (PPI) network through STRING-MODEL, identifying top candidate genes.

Results: Targeting key protein-coding genes with the highest connectivity, we identified COMT, DRD2, and SLC6A3, along with their 17 connected genes. A deep dive into gene-miRNA interactions (GMIs) using NetworkAnalyst revealed that COMT, DRD2, and hsa-miR-16-5p have multiple interactions with OPRM1 and BDNF. Enrichment analysis via Enrichr confirmed that this refined set of 17 impacts dopamine function and are interactive with dopaminergic pathways. Notably, Substance Use disorders (SUD) were the most significant manifestation predicted for the interplays among these genes.

Discussion: Reviewing all PGx annotations for the 17 genes, we found 4,665 PGx entries, among which 1,970 were significant, with a p-value above 0.045. These were ultimately filtered down to 32 potential PGx annotations excluded in association with "Cocaine," "Glucose or Diabetes," and "Dopamine". Accordingly, 12 Pharmacogenes represented 32 PGx-associated with Cocaine, Glucose, and Dopamine, including DRD2, COMT, OPRD1, OPRM1, SLC6A3, CHRNA5, CNR1, CYP2C19, DBH, GABRA2, NOS1AP, and SYT1.

Conclusion: This in silico PGx analysis demonstrates strong, validated connections based on prior published data and robust computational predictions. Among the findings, the COMT gene was found to be the best-scoring gene here.

基于pgx的硅分析鉴定了基因、葡萄糖代谢和多巴胺能功能失调途径与慢性可卡因使用和滥用的相互作用。
我们的团队进行了药物基因组学(PGx)分析,以评估可卡因,葡萄糖代谢和功能连接之间的相互作用,使用深入的硅PGx方法。方法:利用PharmGKB提取与可卡因、葡萄糖和多巴胺相关的PGx注释(原始数据)。筛选后,我们提炼了49个不重复的脑表达基因,并通过STRING-MODEL检查它们在蛋白蛋白相互作用(PPI)网络中的相互作用,确定了顶级候选基因。结果:针对连接性最高的关键蛋白编码基因,我们确定了COMT, DRD2和SLC6A3及其17个连接基因。使用NetworkAnalyst对基因- mirna相互作用(GMIs)的深入研究表明,COMT、DRD2和hsa-miR-16-5p与OPRM1和BDNF有多种相互作用。通过Enrichment分析证实,这17个精细化的集合影响多巴胺功能,并与多巴胺能途径相互作用。值得注意的是,物质使用障碍(SUD)是这些基因相互作用的最显著表现。讨论:回顾17个基因的PGx注释,我们发现4665个PGx条目,其中1,970个显著,p值大于0.045。这些最终被过滤出32个潜在的PGx注释,排除了与“可卡因”、“葡萄糖或糖尿病”和“多巴胺”相关的注释。因此,12个药物基因代表32个与可卡因、葡萄糖和多巴胺相关的pgx,包括DRD2、COMT、OPRD1、OPRM1、SLC6A3、CHRNA5、CNR1、CYP2C19、DBH、GABRA2、NOS1AP和SYT1。结论:基于先前公布的数据和可靠的计算预测,该计算机PGx分析显示了强大的、经过验证的连接。在这些发现中,COMT基因被发现是得分最高的基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Neuropharmacology
Current Neuropharmacology 医学-神经科学
CiteScore
8.70
自引率
1.90%
发文量
369
审稿时长
>12 weeks
期刊介绍: Current Neuropharmacology aims to provide current, comprehensive/mini reviews and guest edited issues of all areas of neuropharmacology and related matters of neuroscience. The reviews cover the fields of molecular, cellular, and systems/behavioural aspects of neuropharmacology and neuroscience. The journal serves as a comprehensive, multidisciplinary expert forum for neuropharmacologists and neuroscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信