Nanotechnology-based approaches for the removal of microplastics from wastewater: a comprehensive review.

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Beilstein Journal of Nanotechnology Pub Date : 2025-09-15 eCollection Date: 2025-01-01 DOI:10.3762/bjnano.16.114
Nayanathara O Sanjeev, Manjunath Singanodi Vallabha, Rebekah Rubidha Lisha Rabi
{"title":"Nanotechnology-based approaches for the removal of microplastics from wastewater: a comprehensive review.","authors":"Nayanathara O Sanjeev, Manjunath Singanodi Vallabha, Rebekah Rubidha Lisha Rabi","doi":"10.3762/bjnano.16.114","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing prevalence of microplastics (MPs) in aquatic environments has raised significant concerns due to their persistence, potential for bioaccumulation, and adverse effects on human and ecosystem health. Conventional wastewater treatment technologies are largely inadequate for effectively removing MPs, especially those in the nanosize range. This review presents a detail analysis of the sources, pathways, detection methods, and health impact of MPs, while emphasizing the emerging role of nanotechnology in their remediation. Nanomaterials, including nanoadsorbents, photocatalysts, and advanced membrane materials, exhibit unique properties such as high surface area, enhanced reactivity, and tunable surface chemistry, which offer promising avenues for the selective and efficient removal of MPs from water. This paper also explores the mechanism, performance and limitations of various nanoenabled treatment strategies such as adsorption, photocatalysis, and membrane filtration using materials like metal-organic frameworks, carbon-based nanomaterials, MXenes, and metal oxides. It also highlights recent innovations such as microrobotic systems and AI-assisted detection frameworks for MP monitoring. Despite high laboratory scale efficiencies, there are several challenges such as material scalability, environmental safety, regulatory frameworks, and real water applicability. This study proposes future directions for sustainable nanotechnology deployment, including green synthesis, hybrid system integration, and machine learning optimization. Together, these approaches aim to establish a comprehensive, scalable, and environmentally safe solution for the remediation of MPs in wastewater systems.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1607-1632"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456080/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.16.114","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing prevalence of microplastics (MPs) in aquatic environments has raised significant concerns due to their persistence, potential for bioaccumulation, and adverse effects on human and ecosystem health. Conventional wastewater treatment technologies are largely inadequate for effectively removing MPs, especially those in the nanosize range. This review presents a detail analysis of the sources, pathways, detection methods, and health impact of MPs, while emphasizing the emerging role of nanotechnology in their remediation. Nanomaterials, including nanoadsorbents, photocatalysts, and advanced membrane materials, exhibit unique properties such as high surface area, enhanced reactivity, and tunable surface chemistry, which offer promising avenues for the selective and efficient removal of MPs from water. This paper also explores the mechanism, performance and limitations of various nanoenabled treatment strategies such as adsorption, photocatalysis, and membrane filtration using materials like metal-organic frameworks, carbon-based nanomaterials, MXenes, and metal oxides. It also highlights recent innovations such as microrobotic systems and AI-assisted detection frameworks for MP monitoring. Despite high laboratory scale efficiencies, there are several challenges such as material scalability, environmental safety, regulatory frameworks, and real water applicability. This study proposes future directions for sustainable nanotechnology deployment, including green synthesis, hybrid system integration, and machine learning optimization. Together, these approaches aim to establish a comprehensive, scalable, and environmentally safe solution for the remediation of MPs in wastewater systems.

基于纳米技术去除废水中微塑料的方法:综述。
由于微塑料的持久性、潜在的生物积累以及对人类和生态系统健康的不利影响,其在水生环境中日益普遍的存在引起了人们的严重关注。传统的废水处理技术在很大程度上不足以有效去除MPs,特别是那些纳米级的。这篇综述详细分析了MPs的来源、途径、检测方法和健康影响,同时强调了纳米技术在其修复中的新兴作用。纳米材料,包括纳米吸附剂、光催化剂和先进的膜材料,具有独特的性能,如高表面积、增强的反应活性和可调的表面化学,为从水中选择性和有效地去除MPs提供了有前途的途径。本文还探讨了各种纳米处理策略的机制,性能和局限性,如吸附,光催化和膜过滤,使用金属有机框架,碳基纳米材料,MXenes和金属氧化物等材料。它还强调了最近的创新,如用于MP监测的微型机器人系统和人工智能辅助检测框架。尽管实验室规模效率很高,但仍存在一些挑战,如材料可扩展性、环境安全、监管框架和实际水适用性。本研究提出了可持续纳米技术应用的未来方向,包括绿色合成、混合系统集成和机器学习优化。总之,这些方法旨在建立一个全面的、可扩展的、环境安全的解决方案,以修复废水系统中的MPs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Beilstein Journal of Nanotechnology
Beilstein Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.70
自引率
3.20%
发文量
109
审稿时长
2 months
期刊介绍: The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology. The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信