Hsiao-Chun Chen, Carter J. Newton, Gustavo Diaz, Yaochao Zheng, Feng Kong, Yao Yao, Li Yang, Brian H. Kvitko
{"title":"Proteomic snapshot of pattern triggered immunity in the Arabidopsis leaf apoplast","authors":"Hsiao-Chun Chen, Carter J. Newton, Gustavo Diaz, Yaochao Zheng, Feng Kong, Yao Yao, Li Yang, Brian H. Kvitko","doi":"10.1111/tpj.70498","DOIUrl":null,"url":null,"abstract":"<p>The apoplast is a critical interface in plant–pathogen interactions, particularly in the context of pattern-triggered immunity (PTI), which is initiated by recognition of microbe-associated molecular patterns. Our study characterizes the proteomic profile of the Arabidopsis apoplast during PTI induced by flg22, a 22-amino-acid bacterial flagellin epitope, to elucidate the output of PTI. Apoplastic washing fluid was extracted with minimal cytoplasmic contamination for liquid chromatography–tandem mass spectrometry analysis. By comparing our data to publicly available transcriptome profiles of flg22 treatment from 1 to 18 h, we observed that several highly abundant proteins exhibit relatively unchanged gene expression across all time points. We also observed topological bias in peptide recovery of 19 enriched receptor-like kinases with peptides predominantly recovered from their ectodomains. Notably, tetraspanin 8, an exosome marker, was enriched in PTI samples. We additionally confirmed increased concentrations of exosomes during PTI. This study enhances our understanding of the proteomic changes in the apoplast during plant immune responses and lays the groundwork for future investigations into the molecular mechanisms of plant defense under recognition of pathogen molecular patterns.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 6","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70498","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70498","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The apoplast is a critical interface in plant–pathogen interactions, particularly in the context of pattern-triggered immunity (PTI), which is initiated by recognition of microbe-associated molecular patterns. Our study characterizes the proteomic profile of the Arabidopsis apoplast during PTI induced by flg22, a 22-amino-acid bacterial flagellin epitope, to elucidate the output of PTI. Apoplastic washing fluid was extracted with minimal cytoplasmic contamination for liquid chromatography–tandem mass spectrometry analysis. By comparing our data to publicly available transcriptome profiles of flg22 treatment from 1 to 18 h, we observed that several highly abundant proteins exhibit relatively unchanged gene expression across all time points. We also observed topological bias in peptide recovery of 19 enriched receptor-like kinases with peptides predominantly recovered from their ectodomains. Notably, tetraspanin 8, an exosome marker, was enriched in PTI samples. We additionally confirmed increased concentrations of exosomes during PTI. This study enhances our understanding of the proteomic changes in the apoplast during plant immune responses and lays the groundwork for future investigations into the molecular mechanisms of plant defense under recognition of pathogen molecular patterns.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.