Dongping Cai, Kai Shi, Zhengxing Gong, Xinfeng Zhang
{"title":"Facile sulfur-doping by self-photosensitization of graphene quantum dots in DMSO for improved sensing","authors":"Dongping Cai, Kai Shi, Zhengxing Gong, Xinfeng Zhang","doi":"10.1007/s00604-025-07512-3","DOIUrl":null,"url":null,"abstract":"<div><p>A photosensitization-based synthesis strategy is established enabling the room-temperature preparation of sulfur-doped graphene quantum dots (S-GQDs). Under 365-nm UV irradiation, GQDs produce singlet oxygen (<sup>1</sup>O<sub>2</sub>), catalyzing the oxidation of dimethyl sulfoxide (DMSO) into sulfur-containing intermediates, which subsequently react with surface functional groups on GQDs to achieve precise sulfur doping. The introduced defect states significantly enhanced radiative recombination, raising the quantum yield to 29.5%. The S-GQDs showed outstanding stability, including superior photobleaching resistance (minimal fluorescence change after 3.5 h UV exposure), high thermal stability (minimal variation from 20 to 80 °C), excellent pH tolerance (< 10% fluctuation within pH 3–12), and stable fluorescence in high-salinity and long-term storage conditions. Utilizing photoinduced electron transfer (PET) and fluorescence resonance energy transfer (FRET) mechanisms, the S-GQDs exhibited sensitivity and selectivity toward picric acid (PA), with a linear response between 1 and 60 μM and a detection limit of 0.56 μM. Practical tests confirmed reliable detection of PA on human finger surfaces, and the results were in good agreement with those obtained by high-performance liquid chromatography (HPLC). This photosensitization-based oxidation strategy provides a green, scalable route for preparation of high-performance S-GQDs that have broad potential applications in environmental monitoring, bioanalysis, etc.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 10","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07512-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A photosensitization-based synthesis strategy is established enabling the room-temperature preparation of sulfur-doped graphene quantum dots (S-GQDs). Under 365-nm UV irradiation, GQDs produce singlet oxygen (1O2), catalyzing the oxidation of dimethyl sulfoxide (DMSO) into sulfur-containing intermediates, which subsequently react with surface functional groups on GQDs to achieve precise sulfur doping. The introduced defect states significantly enhanced radiative recombination, raising the quantum yield to 29.5%. The S-GQDs showed outstanding stability, including superior photobleaching resistance (minimal fluorescence change after 3.5 h UV exposure), high thermal stability (minimal variation from 20 to 80 °C), excellent pH tolerance (< 10% fluctuation within pH 3–12), and stable fluorescence in high-salinity and long-term storage conditions. Utilizing photoinduced electron transfer (PET) and fluorescence resonance energy transfer (FRET) mechanisms, the S-GQDs exhibited sensitivity and selectivity toward picric acid (PA), with a linear response between 1 and 60 μM and a detection limit of 0.56 μM. Practical tests confirmed reliable detection of PA on human finger surfaces, and the results were in good agreement with those obtained by high-performance liquid chromatography (HPLC). This photosensitization-based oxidation strategy provides a green, scalable route for preparation of high-performance S-GQDs that have broad potential applications in environmental monitoring, bioanalysis, etc.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.