Bioinspired Construction of Proton-Coupled Electron Transfer Pathways in Covalent Organic Frameworks for Enhanced Photosynthesis of Hydrogen Peroxide.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-25 DOI:10.1002/cssc.202501760
Aodi Wang, Lingyu Xiang, Guoqing Wang, Xueling Song, Hangxun Xu, Lei Wang
{"title":"Bioinspired Construction of Proton-Coupled Electron Transfer Pathways in Covalent Organic Frameworks for Enhanced Photosynthesis of Hydrogen Peroxide.","authors":"Aodi Wang, Lingyu Xiang, Guoqing Wang, Xueling Song, Hangxun Xu, Lei Wang","doi":"10.1002/cssc.202501760","DOIUrl":null,"url":null,"abstract":"<p><p>Covalent organic frameworks (COFs) have emerged as promising photocatalysts for the artificial photosynthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), yet their practical application is hindered by limited photocatalytic efficiency. Herein, a bioinspired strategy is reported to enhance the photocatalytic performance of COFs by introducing an ortho-positioned arrangement of enol (OH) and imine (N) groups. Through rational molecular engineering, a concerted proton-coupled electron transfer (PCET) pathway is established, which facilitates the efficient separation and transfer of photoexcited charge carriers, thereby dramatically enhancing H<sub>2</sub>O<sub>2</sub> production from water and oxygen. The TbDO COF, featuring the PCET pathway, demonstrates superior performance, achieving a remarkable H<sub>2</sub>O<sub>2</sub> production rate of 7265 μmol g<sup>-1</sup> h<sup>-1</sup> in a nonsacrificial system, surpassing COFs with similar structure but lacking this pathway. This study advances the design of COFs and opens new avenues for sustainable solar-to-chemical energy conversion.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501760"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501760","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent organic frameworks (COFs) have emerged as promising photocatalysts for the artificial photosynthesis of hydrogen peroxide (H2O2), yet their practical application is hindered by limited photocatalytic efficiency. Herein, a bioinspired strategy is reported to enhance the photocatalytic performance of COFs by introducing an ortho-positioned arrangement of enol (OH) and imine (N) groups. Through rational molecular engineering, a concerted proton-coupled electron transfer (PCET) pathway is established, which facilitates the efficient separation and transfer of photoexcited charge carriers, thereby dramatically enhancing H2O2 production from water and oxygen. The TbDO COF, featuring the PCET pathway, demonstrates superior performance, achieving a remarkable H2O2 production rate of 7265 μmol g-1 h-1 in a nonsacrificial system, surpassing COFs with similar structure but lacking this pathway. This study advances the design of COFs and opens new avenues for sustainable solar-to-chemical energy conversion.

以生物为灵感构建共价有机框架中质子耦合电子转移途径以增强过氧化氢的光合作用。
共价有机框架(COFs)作为过氧化氢(H2O2)人工光合作用的一种很有前途的光催化剂,但其实际应用受到光催化效率有限的阻碍。本文报道了一种生物启发策略,通过引入烯醇(OH)和亚胺( N)基团的邻位排列来增强COFs的光催化性能。通过合理的分子工程,建立了质子耦合电子转移(PCET)协同途径,促进了光激发载流子的高效分离和转移,从而大大提高了水和氧的H2O2产量。具有PCET通路的TbDO COF表现出优异的性能,在非牺牲体系中H2O2产率达到了7265 μmol g-1 h-1,超过了具有类似结构但没有PCET通路的COF。该研究推进了COFs的设计,为可持续的太阳能-化学能转换开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信