Penetrating Solar Wind Protons as a Source of Hydrogen to the Martian Atmosphere

IF 2.9 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
M. L. Sorgi Johann, R. J. Lillis, R. D. Jolitz, J. S. Halekas
{"title":"Penetrating Solar Wind Protons as a Source of Hydrogen to the Martian Atmosphere","authors":"M. L. Sorgi Johann,&nbsp;R. J. Lillis,&nbsp;R. D. Jolitz,&nbsp;J. S. Halekas","doi":"10.1029/2024JA033149","DOIUrl":null,"url":null,"abstract":"<p>The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has observed a proton population in the upper Martian atmosphere with plasma velocities and temperatures consistent with the upstream solar wind. This population is believed to originate from solar wind protons that undergo charge exchange with neutral hydrogen in the exosphere, becoming energetic neutral atoms (ENAs) that then penetrate the atmosphere, unaffected by magnetic fields. As these ENAs precipitate, their charge state evolves through subsequent interactions, ultimately depositing as neutral hydrogen. We investigate this deposition process and its variability by combining model predictions with observations of the charged population measured by the Solar Wind Ion Analyzer onboard MAVEN. A Monte Carlo transport model was employed to simulate the competing processes of deposition and backscattering under a range of exospheric and solar wind conditions. Our results show that solar wind hydrogen absorption can exceed <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>10</mn>\n <mn>25</mn>\n </msup>\n </mrow>\n <annotation> ${10}^{25}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{s}}^{-1}$</annotation>\n </semantics></math> at the current epoch, representing 10%–20% of the total hydrogen escape from Mars. This absorption mechanism likely played a significant role in shaping the early Martian atmosphere and climate, when solar wind proton densities were substantially higher.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JA033149","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has observed a proton population in the upper Martian atmosphere with plasma velocities and temperatures consistent with the upstream solar wind. This population is believed to originate from solar wind protons that undergo charge exchange with neutral hydrogen in the exosphere, becoming energetic neutral atoms (ENAs) that then penetrate the atmosphere, unaffected by magnetic fields. As these ENAs precipitate, their charge state evolves through subsequent interactions, ultimately depositing as neutral hydrogen. We investigate this deposition process and its variability by combining model predictions with observations of the charged population measured by the Solar Wind Ion Analyzer onboard MAVEN. A Monte Carlo transport model was employed to simulate the competing processes of deposition and backscattering under a range of exospheric and solar wind conditions. Our results show that solar wind hydrogen absorption can exceed 10 25 ${10}^{25}$ s 1 ${\mathrm{s}}^{-1}$ at the current epoch, representing 10%–20% of the total hydrogen escape from Mars. This absorption mechanism likely played a significant role in shaping the early Martian atmosphere and climate, when solar wind proton densities were substantially higher.

Abstract Image

穿透太阳风质子作为氢的来源进入火星大气
火星大气和挥发性演化(MAVEN)任务观测到火星上层大气中的质子群,其等离子体速度和温度与上游太阳风一致。这个种群被认为起源于太阳风质子与外逸层中的中性氢进行电荷交换,成为高能中性原子(ENAs),然后穿透大气层,不受磁场影响。当这些ENAs沉淀时,它们的电荷状态通过随后的相互作用演变,最终沉积为中性氢。我们通过将模型预测与MAVEN上的太阳风离子分析仪测量的带电人口观测相结合,研究了这一沉积过程及其变异性。采用蒙特卡罗输运模型模拟了在一系列大气和太阳风条件下的沉积和后向散射竞争过程。我们的结果表明,在当前时代,太阳风吸氢量可以超过10 25 ${10}^{25}$ s−1 ${\mathrm{s}}^{-1}$;占火星氢逸出总量的10%-20%。这种吸收机制可能在塑造早期火星大气和气候方面发挥了重要作用,当时太阳风的质子密度要高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信