Laser-Induced HKUST-1 Derived Porous Electrocatalyst: an Innovative Approach to Boost Sustainable Ammonia Synthesis

IF 6.1 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Aneena Lal, Hani Porat, Asmita Dutta, Manish Kumar Yadav, Arie Borenstein
{"title":"Laser-Induced HKUST-1 Derived Porous Electrocatalyst: an Innovative Approach to Boost Sustainable Ammonia Synthesis","authors":"Aneena Lal,&nbsp;Hani Porat,&nbsp;Asmita Dutta,&nbsp;Manish Kumar Yadav,&nbsp;Arie Borenstein","doi":"10.1002/adsu.202500441","DOIUrl":null,"url":null,"abstract":"<p>Conventional synthesis methods of metal-embedded graphene electrodes are time-consuming, energy-extensive, and complex multi-step fabrications, limiting the large-scale production of the materials. This study uses laser processing to fabricate HKUST-1 MOF (Cu<sub>3</sub>(C<sub>9</sub>H<sub>3</sub>O<sub>6</sub>)<sub>2</sub>)-derived porous Cu-Cu<sub>2</sub>O/C (L-HKUST-1) electrocatalyst under ambient conditions for the electrocatalytic nitrate reduction to ammonia (E-NRA). The swift, one-pot, binder-free, zero waste, and scalable laser processing technique enables directly printing Cu-Cu<sub>2</sub>O nanoparticles embedded in a carbon matrix on the nickel substrate under ambient temperature and pressure. Chemical and morphological characterization corroborate the transformation of pristine HKUST-1 to L-HKUST-1, thereby validating that the laser parameters (power, scan rate, resolution) are optimum for the successful fabrication of L-HKUST-1. Electrochemical nitrate reduction is a sustainable way to produce ammonia and can potentially promote a carbon-neutral economy. The electrochemical investigation demonstrates that the maximum yield of ammonia and Faradaic efficiency for L-HKUST-1 are 13,871.58 ± 17.11 µg h<sup>−1 </sup>mg <sup>−1</sup><sub>(cat)</sub> at −0.65 V versus RHE (Reversible Hydrogen Electrode) and 80 ± 6.7% at −0.45 V, respectively. Augmented positive overpotential at −10 mAcm<sup>−2</sup> in the presence of the nitrate source confirms the superior electrocatalytic behavior for E-NRA.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 9","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202500441","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsu.202500441","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional synthesis methods of metal-embedded graphene electrodes are time-consuming, energy-extensive, and complex multi-step fabrications, limiting the large-scale production of the materials. This study uses laser processing to fabricate HKUST-1 MOF (Cu3(C9H3O6)2)-derived porous Cu-Cu2O/C (L-HKUST-1) electrocatalyst under ambient conditions for the electrocatalytic nitrate reduction to ammonia (E-NRA). The swift, one-pot, binder-free, zero waste, and scalable laser processing technique enables directly printing Cu-Cu2O nanoparticles embedded in a carbon matrix on the nickel substrate under ambient temperature and pressure. Chemical and morphological characterization corroborate the transformation of pristine HKUST-1 to L-HKUST-1, thereby validating that the laser parameters (power, scan rate, resolution) are optimum for the successful fabrication of L-HKUST-1. Electrochemical nitrate reduction is a sustainable way to produce ammonia and can potentially promote a carbon-neutral economy. The electrochemical investigation demonstrates that the maximum yield of ammonia and Faradaic efficiency for L-HKUST-1 are 13,871.58 ± 17.11 µg h−1 mg −1(cat) at −0.65 V versus RHE (Reversible Hydrogen Electrode) and 80 ± 6.7% at −0.45 V, respectively. Augmented positive overpotential at −10 mAcm−2 in the presence of the nitrate source confirms the superior electrocatalytic behavior for E-NRA.

Abstract Image

激光诱导HKUST-1衍生多孔电催化剂:促进可持续氨合成的创新方法
传统的金属嵌入石墨烯电极合成方法耗时长、耗能大、工序复杂,限制了材料的大规模生产。本研究利用激光加工技术在常温条件下制备了hust -1 MOF (Cu3(C9H3O6)2)衍生多孔Cu-Cu2O/C (l - hust -1)电催化剂,用于电催化硝酸还原制氨(E-NRA)。这种快速、一锅、无粘合剂、零浪费和可扩展的激光加工技术可以在环境温度和压力下直接打印嵌入在镍基板上的碳基体中的Cu-Cu2O纳米颗粒。化学和形态表征证实了原始HKUST-1向L-HKUST-1的转变,从而验证了激光参数(功率,扫描速率,分辨率)是L-HKUST-1成功制造的最佳参数。电化学硝酸还原是一种可持续生产氨的方法,可以潜在地促进碳中和经济。电化学研究表明,与RHE(可逆氢电极)相比,L-HKUST-1在−0.65 V下的最大氨收率和法拉第效率分别为13,871.58±17.11µg h−1 mg−1(cat),在−0.45 V下为80±6.7%。在−10 mAcm−2下,硝酸盐源的存在增加了正过电位,证实了E-NRA具有优越的电催化行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信