Oleksandr Mashkov, Oleksandr Stroyuk, Claudia Buerhop, Sanna Bind, Dylan Clark, Jens Hauch, Ian Marius Peters
{"title":"Nondestructive Detection of Water Ingress in Solar Modules Using Near-Infrared Absorbance Spectroscopy","authors":"Oleksandr Mashkov, Oleksandr Stroyuk, Claudia Buerhop, Sanna Bind, Dylan Clark, Jens Hauch, Ian Marius Peters","doi":"10.1002/solr.202500499","DOIUrl":null,"url":null,"abstract":"<p>Moisture ingress is a key factor in the degradation of photovoltaic module components. This study employs near-infrared absorption spectroscopy to nondestructively quantify water uptake in backsheets and encapsulants, using a water index derived from the 1910-1920 nm absorption band. Measurements covered short-term dynamics during rainfall, long-term outdoor monitoring, and spatial mapping. Short-term monitoring showed a 14% increase in the water index within 20 min of observations. Five months of rooftop measurements revealed strong sensitivity to humidity and temperature: the index rose by 75% as relative humidity increased from 20% to 50%, and fell by 50% as temperature rose from 0°C to 40°C. Comparative field campaigns in 2021 and 2023 showed material-specific trends: under identical conditions, polyamide and fluoropolymer-coated backsheets exhibited average water index increases of 32%, while polyvinylidene fluoride showed only a 17% increase. Changes in distribution shape indicated differing moisture resistance among materials. Gravimetric analysis confirmed material-dependent water retention. Spatial mapping and immersion tests revealed localized moisture accumulation and saturation-type sorption, with uptake rates—derived via kinetic fitting—ca. 27% higher in field-aged modules than in stored ones. These results establish near-infrared spectroscopy as a scalable and noninvasive tool for detecting moisture-related degradation in photovoltaic modules.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 18","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500499","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500499","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Moisture ingress is a key factor in the degradation of photovoltaic module components. This study employs near-infrared absorption spectroscopy to nondestructively quantify water uptake in backsheets and encapsulants, using a water index derived from the 1910-1920 nm absorption band. Measurements covered short-term dynamics during rainfall, long-term outdoor monitoring, and spatial mapping. Short-term monitoring showed a 14% increase in the water index within 20 min of observations. Five months of rooftop measurements revealed strong sensitivity to humidity and temperature: the index rose by 75% as relative humidity increased from 20% to 50%, and fell by 50% as temperature rose from 0°C to 40°C. Comparative field campaigns in 2021 and 2023 showed material-specific trends: under identical conditions, polyamide and fluoropolymer-coated backsheets exhibited average water index increases of 32%, while polyvinylidene fluoride showed only a 17% increase. Changes in distribution shape indicated differing moisture resistance among materials. Gravimetric analysis confirmed material-dependent water retention. Spatial mapping and immersion tests revealed localized moisture accumulation and saturation-type sorption, with uptake rates—derived via kinetic fitting—ca. 27% higher in field-aged modules than in stored ones. These results establish near-infrared spectroscopy as a scalable and noninvasive tool for detecting moisture-related degradation in photovoltaic modules.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.