One-at-a-Time Parameter Perturbation Ensemble of the Community Land Model, Version 5.1

IF 4.6 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
D. Kennedy, K. Dagon, D. M. Lawrence, R. A. Fisher, B. M. Sanderson, N. Collier, F. M. Hoffman, C. D. Koven, E. Kluzek, S. Levis, X. Lu, K. W. Oleson, C. M. Zarakas, Y. Cheng, A. C. Foster, M. D. Fowler, L. R. Hawkins, T. Kavoo, S. Kumar, A. J. Newman, P. J. Lawrence, F. Li, D. L. Lombardozzi, Y. Luo, J. K. Shuman, A. L. S. Swann, S. C. Swenson, G. Tang, W. R. Wieder, A. W. Wood
{"title":"One-at-a-Time Parameter Perturbation Ensemble of the Community Land Model, Version 5.1","authors":"D. Kennedy,&nbsp;K. Dagon,&nbsp;D. M. Lawrence,&nbsp;R. A. Fisher,&nbsp;B. M. Sanderson,&nbsp;N. Collier,&nbsp;F. M. Hoffman,&nbsp;C. D. Koven,&nbsp;E. Kluzek,&nbsp;S. Levis,&nbsp;X. Lu,&nbsp;K. W. Oleson,&nbsp;C. M. Zarakas,&nbsp;Y. Cheng,&nbsp;A. C. Foster,&nbsp;M. D. Fowler,&nbsp;L. R. Hawkins,&nbsp;T. Kavoo,&nbsp;S. Kumar,&nbsp;A. J. Newman,&nbsp;P. J. Lawrence,&nbsp;F. Li,&nbsp;D. L. Lombardozzi,&nbsp;Y. Luo,&nbsp;J. K. Shuman,&nbsp;A. L. S. Swann,&nbsp;S. C. Swenson,&nbsp;G. Tang,&nbsp;W. R. Wieder,&nbsp;A. W. Wood","doi":"10.1029/2024MS004715","DOIUrl":null,"url":null,"abstract":"<p>Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model computational costs. We constructed a large parameter perturbation ensemble (PPE) for the Community Land Model version 5.1 with biogeochemistry configuration (CLM5.1-BGC). We performed more than 2,000 simulations perturbing 211 parameters across six forcing scenarios. This provides an expansive data set, which can be used to identify the most influential parameters on a wide range of output variables globally, by biome, or by plant functional type. We found that parameter effects can exceed scenario effects and that a small number of parameters explains a large fraction of variance across our ensemble. The most important parameters can differ regionally and also based on the forcing scenario. The software infrastructure developed for this experiment has greatly reduced the human and computer time needed for CLM PPEs, which can facilitate routine investigation of parameter sensitivity and uncertainty, as well as automated calibration.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004715","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024MS004715","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model computational costs. We constructed a large parameter perturbation ensemble (PPE) for the Community Land Model version 5.1 with biogeochemistry configuration (CLM5.1-BGC). We performed more than 2,000 simulations perturbing 211 parameters across six forcing scenarios. This provides an expansive data set, which can be used to identify the most influential parameters on a wide range of output variables globally, by biome, or by plant functional type. We found that parameter effects can exceed scenario effects and that a small number of parameters explains a large fraction of variance across our ensemble. The most important parameters can differ regionally and also based on the forcing scenario. The software infrastructure developed for this experiment has greatly reduced the human and computer time needed for CLM PPEs, which can facilitate routine investigation of parameter sensitivity and uncertainty, as well as automated calibration.

Abstract Image

Abstract Image

群落土地模型的一次参数摄动集合,版本5.1
综合土地模型具有明显的参数不确定性,由于参数数量多,模型计算成本高,难以量化。我们构建了具有生物地球化学配置(CLM5.1-BGC)的大参数摄动系综(PPE)。我们在六种强迫情景中进行了2000多次模拟,干扰了211个参数。这提供了一个广泛的数据集,可用于在全球范围内,按生物群系或按植物功能类型确定最具影响力的输出变量参数。我们发现参数效应可以超过情景效应,并且少量参数解释了我们整体中大部分方差。最重要的参数可能因区域而异,也可能因强迫情景而异。为本实验开发的软件基础设施大大减少了CLM ppe所需的人力和计算机时间,可以方便地进行参数灵敏度和不确定度的常规调查,以及自动校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信