Rapid and Sensitive SERS Detection of Bisphenol A via Using Hybrid Si Nanoparticle/Au Nanoparticle on Glass Substrates

IF 3.3 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Silicon Pub Date : 2025-07-23 DOI:10.1007/s12633-025-03403-7
Amer B. Dheyab, Alwan M. Alwan, Allaa A. Jabbar, Layla A. Wali
{"title":"Rapid and Sensitive SERS Detection of Bisphenol A via Using Hybrid Si Nanoparticle/Au Nanoparticle on Glass Substrates","authors":"Amer B. Dheyab,&nbsp;Alwan M. Alwan,&nbsp;Allaa A. Jabbar,&nbsp;Layla A. Wali","doi":"10.1007/s12633-025-03403-7","DOIUrl":null,"url":null,"abstract":"<div><p>A novel hybrid Structures plasmonics sensor of Au Nanoparticles/ Si Nanoparticles configuration (Si@Au NPs) for effectively sensing bisphenol A (BPA) was extensively synthesized and investigated. The microporous silicon was created via laser-assisting etching method with 30mW/cm<sup>2</sup> and 530 nm laser intensity and wavelength in an etching solution of 1:2 volumetric mixing ratio of 40% Hydrofluoric Acid (HF) of ethanol(C₂H₅OH) with 20 mA/cm<sup>2</sup> and 10 min etching current density and time respectively. The hybrid structure was produced by electrodeless ion reduction of hydrogen bonds of silicon nanoparticles through 0.005 M HAuCl<sub>4</sub> solution for 3 min. The characterization of Si Nanoparticles and the sensing performance of hybrid structures plasmonics sensors have been inspected by FE-SEM (Field Emission Scanning Electron Microscopes), HR-TEM (High-Resolution Transmission Electron Microscopy), XRD(X-ray diffraction), and Raman microscopy. The performance of the hybrid Structures sensor was investigated with BPA concentrations ranging from 10<sup>–3</sup>, 10<sup>–5</sup>, 10<sup>–6</sup>, 10<sup>–7</sup>, and10<sup>−8</sup> M. The fabricated sensor, exhibits, a very low Detection Limit (DL) with excellent reproducibility with the lowest variation of 10<sup>–10</sup> M and 1.6% correspondingly, owing to the higher specific surface area extraordinary density of Si@Au NPs in addition to the huge surface of hot spot districts. The isolated Si@Au NPs hybrid structures sense the ultra-low BPA concentrations lower than the European Union acceptable of about (2.6 μM).</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"17 13","pages":"3113 - 3124"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-025-03403-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel hybrid Structures plasmonics sensor of Au Nanoparticles/ Si Nanoparticles configuration (Si@Au NPs) for effectively sensing bisphenol A (BPA) was extensively synthesized and investigated. The microporous silicon was created via laser-assisting etching method with 30mW/cm2 and 530 nm laser intensity and wavelength in an etching solution of 1:2 volumetric mixing ratio of 40% Hydrofluoric Acid (HF) of ethanol(C₂H₅OH) with 20 mA/cm2 and 10 min etching current density and time respectively. The hybrid structure was produced by electrodeless ion reduction of hydrogen bonds of silicon nanoparticles through 0.005 M HAuCl4 solution for 3 min. The characterization of Si Nanoparticles and the sensing performance of hybrid structures plasmonics sensors have been inspected by FE-SEM (Field Emission Scanning Electron Microscopes), HR-TEM (High-Resolution Transmission Electron Microscopy), XRD(X-ray diffraction), and Raman microscopy. The performance of the hybrid Structures sensor was investigated with BPA concentrations ranging from 10–3, 10–5, 10–6, 10–7, and10−8 M. The fabricated sensor, exhibits, a very low Detection Limit (DL) with excellent reproducibility with the lowest variation of 10–10 M and 1.6% correspondingly, owing to the higher specific surface area extraordinary density of Si@Au NPs in addition to the huge surface of hot spot districts. The isolated Si@Au NPs hybrid structures sense the ultra-low BPA concentrations lower than the European Union acceptable of about (2.6 μM).

玻璃基板上硅纳米粒子/金纳米粒子复合SERS快速灵敏检测双酚A
摘要合成并研究了一种新型的金纳米粒子/硅纳米粒子杂化结构等离子体传感器(Si@Au NPs),可有效检测双酚A (BPA)。微孔硅采用激光辅助蚀刻方法,激光强度和波长分别为30mW/cm2和530 nm,在40%氢氟酸(HF)与乙醇(C₂H₅OH)体积混合比为1:2的蚀刻溶液中制备,蚀刻电流密度和时间分别为20 mA/cm2和10 min。在0.005 M的HAuCl4溶液中对硅纳米颗粒的氢键进行3 min的无电极离子还原,得到了杂化结构。采用FE-SEM(场发射扫描电子显微镜)、HR-TEM(高分辨率透射电子显微镜)、XRD(x射线衍射)和拉曼显微镜对Si纳米粒子的表征和杂化结构等离子体传感器的传感性能进行了检测。在BPA浓度范围为10-3、10-5、10-6、10-7和10 - 8 M的情况下,研究了混合结构传感器的性能。由于Si@Au NPs具有较高的比表面积、异常密度以及热点区的巨大表面,该传感器具有非常低的检测限(DL)和良好的重现性,相应的最低变化为10-10 M和1.6%。分离的Si@Au NPs杂化结构检测到的BPA浓度低于欧盟标准(约2.6 μM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Silicon
Silicon CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
20.60%
发文量
685
审稿时长
>12 weeks
期刊介绍: The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信