Dense matter in neutron stars with eXTP

IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Ang Li, Anna L. Watts, Guobao Zhang, Sebastien Guillot, Yanjun Xu, Andrea Santangelo, Silvia Zane, Hua Feng, Shuang-Nan Zhang, Mingyu Ge, Liqiang Qi, Tuomo Salmi, Bas Dorsman, Zhiqiang Miao, Zhonghao Tu, Yuri Cavecchi, Xia Zhou, Xiaoping Zheng, Weihua Wang, Quan Cheng, Xuezhi Liu, Yining Wei, Wei Wang, Yujing Xu, Shanshan Weng, Weiwei Zhu, Zhaosheng Li, Lijing Shao, Youli Tuo, Akira Dohi, Ming Lyu, Peng Liu, Jianping Yuan, Mingyang Wang, Wenda Zhang, Zexi Li, Lian Tao, Liang Zhang, Hong Shen, Constança Providência, Laura Tolos, Alessandro Patruno, Li Li, Guozhu Liu, Kai Zhou, Lie-Wen Chen, Yizhong Fan, Toshitaka Kajino, Dong Lai, Xiangdong Li, Jie Meng, Xiaodong Tang, Zhigang Xiao, Shaolin Xiong, Renxin Xu, Shan-Gui Zhou, David R. Ballantyne, G. Fiorella Burgio, Jérôme Chenevez, Devarshi Choudhury, Anthea F. Fantina, Duncan K. Galloway, Francesca Gulminelli, Kai Hebeler, Mariska Hoogkamer, Jorge E. Horvath, Yves Kini, Aleksi Kurkela, Manuel Linares, Jérôme Margueron, Melissa Mendes, Micaela Oertel, Alessandro Papitto, Juri Poutanen, Nanda Rea, Achim Schwenk, Xin-Ying Song, Isak Svensson, David Tsang, Aleksi Vuorinen, Nils Andersson, M. Coleman Miller, Luciano Rezzolla, Jirina R. Stone, Anthony W. Thomas
{"title":"Dense matter in neutron stars with eXTP","authors":"Ang Li,&nbsp;Anna L. Watts,&nbsp;Guobao Zhang,&nbsp;Sebastien Guillot,&nbsp;Yanjun Xu,&nbsp;Andrea Santangelo,&nbsp;Silvia Zane,&nbsp;Hua Feng,&nbsp;Shuang-Nan Zhang,&nbsp;Mingyu Ge,&nbsp;Liqiang Qi,&nbsp;Tuomo Salmi,&nbsp;Bas Dorsman,&nbsp;Zhiqiang Miao,&nbsp;Zhonghao Tu,&nbsp;Yuri Cavecchi,&nbsp;Xia Zhou,&nbsp;Xiaoping Zheng,&nbsp;Weihua Wang,&nbsp;Quan Cheng,&nbsp;Xuezhi Liu,&nbsp;Yining Wei,&nbsp;Wei Wang,&nbsp;Yujing Xu,&nbsp;Shanshan Weng,&nbsp;Weiwei Zhu,&nbsp;Zhaosheng Li,&nbsp;Lijing Shao,&nbsp;Youli Tuo,&nbsp;Akira Dohi,&nbsp;Ming Lyu,&nbsp;Peng Liu,&nbsp;Jianping Yuan,&nbsp;Mingyang Wang,&nbsp;Wenda Zhang,&nbsp;Zexi Li,&nbsp;Lian Tao,&nbsp;Liang Zhang,&nbsp;Hong Shen,&nbsp;Constança Providência,&nbsp;Laura Tolos,&nbsp;Alessandro Patruno,&nbsp;Li Li,&nbsp;Guozhu Liu,&nbsp;Kai Zhou,&nbsp;Lie-Wen Chen,&nbsp;Yizhong Fan,&nbsp;Toshitaka Kajino,&nbsp;Dong Lai,&nbsp;Xiangdong Li,&nbsp;Jie Meng,&nbsp;Xiaodong Tang,&nbsp;Zhigang Xiao,&nbsp;Shaolin Xiong,&nbsp;Renxin Xu,&nbsp;Shan-Gui Zhou,&nbsp;David R. Ballantyne,&nbsp;G. Fiorella Burgio,&nbsp;Jérôme Chenevez,&nbsp;Devarshi Choudhury,&nbsp;Anthea F. Fantina,&nbsp;Duncan K. Galloway,&nbsp;Francesca Gulminelli,&nbsp;Kai Hebeler,&nbsp;Mariska Hoogkamer,&nbsp;Jorge E. Horvath,&nbsp;Yves Kini,&nbsp;Aleksi Kurkela,&nbsp;Manuel Linares,&nbsp;Jérôme Margueron,&nbsp;Melissa Mendes,&nbsp;Micaela Oertel,&nbsp;Alessandro Papitto,&nbsp;Juri Poutanen,&nbsp;Nanda Rea,&nbsp;Achim Schwenk,&nbsp;Xin-Ying Song,&nbsp;Isak Svensson,&nbsp;David Tsang,&nbsp;Aleksi Vuorinen,&nbsp;Nils Andersson,&nbsp;M. Coleman Miller,&nbsp;Luciano Rezzolla,&nbsp;Jirina R. Stone,&nbsp;Anthony W. Thomas","doi":"10.1007/s11433-025-2761-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this white paper, we present the potential of the enhanced X-ray timing and polarimetry (eXTP) mission to constrain the equation of state of dense matter in neutron stars, exploring regimes not directly accessible to terrestrial experiments. By observing a diverse population of neutron stars—including isolated objects, X-ray bursters, and accreting systems—eXTP’s unique combination of timing, spectroscopy, and polarimetry enables high-precision measurements of compactness, spin, surface temperature, polarimetric signals, and timing irregularity. These multifaceted observations, combined with advances in theoretical modeling, pave the way toward a comprehensive description of the properties and phases of dense matter from the crust to the core of neutron stars. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is planned to be launched in early 2030.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 11","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2761-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this white paper, we present the potential of the enhanced X-ray timing and polarimetry (eXTP) mission to constrain the equation of state of dense matter in neutron stars, exploring regimes not directly accessible to terrestrial experiments. By observing a diverse population of neutron stars—including isolated objects, X-ray bursters, and accreting systems—eXTP’s unique combination of timing, spectroscopy, and polarimetry enables high-precision measurements of compactness, spin, surface temperature, polarimetric signals, and timing irregularity. These multifaceted observations, combined with advances in theoretical modeling, pave the way toward a comprehensive description of the properties and phases of dense matter from the crust to the core of neutron stars. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is planned to be launched in early 2030.

中子星中的致密物质
在本白皮书中,我们介绍了增强x射线计时和偏振(eXTP)任务的潜力,以约束中子星中致密物质的状态方程,探索无法直接进行地面实验的制度。通过观察各种各样的中子星,包括孤立的天体、x射线暴和吸积系统,extp独特的定时、光谱和偏振测量技术组合可以高精度地测量致密度、自旋、表面温度、偏振信号和定时不规则性。这些多方面的观察,加上理论建模的进步,为全面描述中子星从地壳到核心的致密物质的性质和阶段铺平了道路。在由中国科学院高能物理研究所领导的一个国际财团的开发下,eXTP任务计划在2030年初发射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信