Towards sustainable PMR for organic contaminant removal from municipal wastewater

IF 3.1 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Veronica Cozzolino, Gerardo Coppola, Sudip Chakraborty, Giovanni Chiappetta, Alessio Siciliano, Carlo Limonti, Giulia Maria Curcio, Catia Algieri and Vincenza Calabrò
{"title":"Towards sustainable PMR for organic contaminant removal from municipal wastewater","authors":"Veronica Cozzolino, Gerardo Coppola, Sudip Chakraborty, Giovanni Chiappetta, Alessio Siciliano, Carlo Limonti, Giulia Maria Curcio, Catia Algieri and Vincenza Calabrò","doi":"10.1039/D5EW00485C","DOIUrl":null,"url":null,"abstract":"<p >Persistent organic pollutants (POPs) are dangerous for the human body and for the environment, due to their high chemical stability at low concentrations and low biodegradability. Traditional treatment plants are inadequate or inefficient, making their removal from water very difficult. Unlike most existing studies that rely on synthetic wastewater, the novelty of this work lies in studying the photocatalytic degradation of POPs in real urban wastewater using titanium dioxide-based slurry reactors. A distinctive contribution of this work also lies in the comparison of two reactor configurations (internal <em>vs.</em> external UV sources), supported by finite element modelling (FEM) to simulate and optimize light distribution. The results showed that the configuration with an immersed lamp, which ensures better light distribution, leads to enhanced catalytic activity at lower photocatalyst concentration and low light power. This optimal configuration was subsequently applied in a slurry photocatalytic membrane reactor (SPMR), resulting in improved pollutant removal efficiency. In particular, experimental results demonstrated that using an inorganic membrane with a molecular weight cut-off of 1 kDa achieved approximately a 15% increase in pollutant removal efficiency. This integrated, experimentally validated approach addresses a critical gap in translating lab-scale photocatalysis research to real wastewater treatment.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2398-2411"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ew/d5ew00485c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d5ew00485c","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Persistent organic pollutants (POPs) are dangerous for the human body and for the environment, due to their high chemical stability at low concentrations and low biodegradability. Traditional treatment plants are inadequate or inefficient, making their removal from water very difficult. Unlike most existing studies that rely on synthetic wastewater, the novelty of this work lies in studying the photocatalytic degradation of POPs in real urban wastewater using titanium dioxide-based slurry reactors. A distinctive contribution of this work also lies in the comparison of two reactor configurations (internal vs. external UV sources), supported by finite element modelling (FEM) to simulate and optimize light distribution. The results showed that the configuration with an immersed lamp, which ensures better light distribution, leads to enhanced catalytic activity at lower photocatalyst concentration and low light power. This optimal configuration was subsequently applied in a slurry photocatalytic membrane reactor (SPMR), resulting in improved pollutant removal efficiency. In particular, experimental results demonstrated that using an inorganic membrane with a molecular weight cut-off of 1 kDa achieved approximately a 15% increase in pollutant removal efficiency. This integrated, experimentally validated approach addresses a critical gap in translating lab-scale photocatalysis research to real wastewater treatment.

Abstract Image

可持续PMR去除城市污水中的有机污染物
由于持久性有机污染物在低浓度下具有很高的化学稳定性和低生物降解性,因此对人体和环境都是危险的。传统的处理设备不充分或效率低下,使其从水中去除非常困难。与大多数依赖合成废水的现有研究不同,这项工作的新颖之处在于使用二氧化钛基浆状反应器研究真实城市废水中持久性有机污染物的光催化降解。这项工作的一个独特贡献还在于比较了两种反应器配置(内部与外部紫外线源),并通过有限元建模(FEM)来模拟和优化光分布。结果表明,在较低的光催化剂浓度和较低的光功率下,浸没灯的配置保证了较好的光分布,从而提高了催化活性。该优化配置随后应用于浆状光催化膜反应器(SPMR),从而提高了污染物去除效率。特别是,实验结果表明,使用分子量截止为1 kDa的无机膜可以使污染物去除效率提高约15%。这种集成的,经过实验验证的方法解决了将实验室规模的光催化研究转化为实际废水处理的关键差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信