Impact of Al and Mn doping on the catalytic activity of magnetite spinel for sulfamethoxazole degradation: kinetics and toxicity assessment†

IF 3.1 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
B. Gokulakrishnan and G. Satishkumar
{"title":"Impact of Al and Mn doping on the catalytic activity of magnetite spinel for sulfamethoxazole degradation: kinetics and toxicity assessment†","authors":"B. Gokulakrishnan and G. Satishkumar","doi":"10.1039/D5EW00452G","DOIUrl":null,"url":null,"abstract":"<p >This study examined the impact of redox-active manganese (Mn) and redox-inactive aluminium (Al) substituted magnetite, both encapsulated in a carbon matrix, on the catalytic wet peroxide oxidation of (10 ppm) antibiotic sulfamethoxazole (SMX). The Lewis acid character of Al in Fe(FeAl)<small><sub>2</sub></small>O<small><sub>4</sub></small>@C and the high electronegativity of Mn in Fe(FeMn)<small><sub>2</sub></small>O<small><sub>4</sub></small>@C effectively polarized the neighbouring Fe<small><sup>3+(<em>δ</em>+)</sup></small>. This interaction was evidenced by a shift in the Fe<small><sup>3+</sup></small> peak to a higher binding energy of about 1.1 eV in the XPS analysis of both catalysts. However, under the optimized conditions, Fe(FeAl)<small><sub>2</sub></small>O<small><sub>4</sub></small>@C decomposed H<small><sub>2</sub></small>O<small><sub>2</sub></small> with a three times higher <em>k</em><small><sub>obs</sub></small> value (0.11 min<small><sup>−1</sup></small>) compared to Fe(FeMn)<small><sub>2</sub></small>O<small><sub>4</sub></small>@C (0.037 min<small><sup>−1</sup></small>), though both redox-active Fe and Mn are capable of generating HO· from H<small><sub>2</sub></small>O<small><sub>2</sub></small> in the Fe(FeMn)<small><sub>2</sub></small>O<small><sub>4</sub></small>@C catalyst. This difference in the kinetics can be attributed to the partial neutralization of the polarization effect of Mn on Fe<small><sup>3+</sup></small> due to competition between H<small><sub>2</sub></small>O<small><sub>2</sub></small> and neighbouring Fe<small><sup>3+(<em>δ</em>+)</sup></small> for the oxidation of Mn<small><sup>2+</sup></small> in the spinel structure. Consequently, the Fe(FeAl)<small><sub>2</sub></small>O<small><sub>4</sub></small>@C catalyst exhibited superior catalytic performance for the degradation of SMX with 60% TOC removal, compared to 50% and 18% attained from Fe(FeMn)<small><sub>2</sub></small>O<small><sub>4</sub></small>@C and Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@C, respectively. Furthermore, at higher pH levels, Fe(FeAl)<small><sub>2</sub></small>O<small><sub>4</sub></small>@C selectively decomposed H<small><sub>2</sub></small>O<small><sub>2</sub></small> while the Fe(FeMn)<small><sub>2</sub></small>O<small><sub>4</sub></small>@C catalyst produced O<small><sub>2</sub></small> and H<small><sub>2</sub></small>O by non-selective decomposition of H<small><sub>2</sub></small>O<small><sub>2</sub></small>. The effects of various inorganic anions, organic acids, and water matrices on SMX degradation were investigated over all the catalysts. The Fe(FeAl)<small><sub>2</sub></small>O<small><sub>4</sub></small>@C catalyst effectively detoxifies the effluent within 30 minutes. Conversely, effluent from Fe(FeMn)<small><sub>2</sub></small>O<small><sub>4</sub></small>@C remains more toxic, showing a 60% mortality rate in acute toxicity assessment after the same reaction time.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2363-2377"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d5ew00452g","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study examined the impact of redox-active manganese (Mn) and redox-inactive aluminium (Al) substituted magnetite, both encapsulated in a carbon matrix, on the catalytic wet peroxide oxidation of (10 ppm) antibiotic sulfamethoxazole (SMX). The Lewis acid character of Al in Fe(FeAl)2O4@C and the high electronegativity of Mn in Fe(FeMn)2O4@C effectively polarized the neighbouring Fe3+(δ+). This interaction was evidenced by a shift in the Fe3+ peak to a higher binding energy of about 1.1 eV in the XPS analysis of both catalysts. However, under the optimized conditions, Fe(FeAl)2O4@C decomposed H2O2 with a three times higher kobs value (0.11 min−1) compared to Fe(FeMn)2O4@C (0.037 min−1), though both redox-active Fe and Mn are capable of generating HO· from H2O2 in the Fe(FeMn)2O4@C catalyst. This difference in the kinetics can be attributed to the partial neutralization of the polarization effect of Mn on Fe3+ due to competition between H2O2 and neighbouring Fe3+(δ+) for the oxidation of Mn2+ in the spinel structure. Consequently, the Fe(FeAl)2O4@C catalyst exhibited superior catalytic performance for the degradation of SMX with 60% TOC removal, compared to 50% and 18% attained from Fe(FeMn)2O4@C and Fe3O4@C, respectively. Furthermore, at higher pH levels, Fe(FeAl)2O4@C selectively decomposed H2O2 while the Fe(FeMn)2O4@C catalyst produced O2 and H2O by non-selective decomposition of H2O2. The effects of various inorganic anions, organic acids, and water matrices on SMX degradation were investigated over all the catalysts. The Fe(FeAl)2O4@C catalyst effectively detoxifies the effluent within 30 minutes. Conversely, effluent from Fe(FeMn)2O4@C remains more toxic, showing a 60% mortality rate in acute toxicity assessment after the same reaction time.

Abstract Image

Al和Mn掺杂对磁铁矿尖晶石降解磺胺甲恶唑催化活性的影响:动力学和毒性评价
本研究考察了氧化还原活性锰(Mn)和氧化还原非活性铝(Al)取代磁铁矿对(10ppm)抗生素磺胺甲恶唑(SMX)催化湿式过氧化氧化的影响,两者都包裹在碳基质中。Fe(FeAl)2O4@C中Al的Lewis酸性质和Fe(FeMn)2O4@C中Mn的高电负性有效地极化了邻近的Fe3+(δ+)。在XPS分析中,两种催化剂的Fe3+峰向更高结合能(约1.1 eV)的转变证明了这种相互作用。然而,在优化条件下,Fe(FeAl)2O4@C分解H2O2的kobs值(0.11 min−1)是Fe(FeMn)2O4@C (0.037 min−1)的3倍,尽管在Fe(FeMn)2O4@C催化剂中具有氧化还原活性的Fe和Mn都能从H2O2生成HO·。这种动力学上的差异可归因于H2O2和邻近的Fe3+(δ+)在尖晶石结构中氧化Mn2+的竞争,部分中和了Mn对Fe3+的极化效应。因此,Fe(FeAl)2O4@C催化剂对SMX的降解表现出优异的催化性能,TOC去除率为60%,而Fe(FeMn)2O4@C和Fe3O4@C催化剂的去除率分别为50%和18%。此外,在较高的pH水平下,Fe(FeAl)2O4@C选择性分解H2O2,而Fe(FeMn)2O4@C催化剂通过非选择性分解H2O2生成O2和H2O。考察了各种无机阴离子、有机酸和水基质对SMX降解的影响。铁(FeAl)2O4@C催化剂能在30分钟内有效解毒废水。相反,铁(FeMn)2O4@C排出的废水毒性更大,在相同的反应时间后,急性毒性评估显示死亡率为60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信