Hybrid MOF-Zwitterionic Polymer Membranes for Efficient and Antifouling Solar Seawater Desalination

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu-Han Ju, , , Tzu-Yun Hsieh, , , Yi-Hsuan Lin, , , Cheng-Liang Liu, , , Dun-Yen Kang*, , and , Shyh-Chyang Luo*, 
{"title":"Hybrid MOF-Zwitterionic Polymer Membranes for Efficient and Antifouling Solar Seawater Desalination","authors":"Yu-Han Ju,&nbsp;, ,&nbsp;Tzu-Yun Hsieh,&nbsp;, ,&nbsp;Yi-Hsuan Lin,&nbsp;, ,&nbsp;Cheng-Liang Liu,&nbsp;, ,&nbsp;Dun-Yen Kang*,&nbsp;, and ,&nbsp;Shyh-Chyang Luo*,&nbsp;","doi":"10.1021/acsapm.5c01693","DOIUrl":null,"url":null,"abstract":"<p >Solar desalination presents a promising avenue for sustainable freshwater generation; however, fouling and long-term instability continue to pose significant challenges, particularly in complex marine environments. In this study, we introduce a solar-driven seawater evaporation membrane built on a glass fiber (GF) substrate, enhanced with a CAU-10-H metal–organic framework (MOF) layer to facilitate water transport, along with a composite photothermal top layer made of carbon black and dopamine hydrochloride (CB@DA). To tackle the fouling issue and enhance sustainability, we also grafted a zwitterionic PSBMA molecular brush onto the membrane surface, creating a hydration shield that resists biofouling and organic adhesion. Under simulated sunlight, membranes with stronger CAU-10-H binding exhibited higher evaporation efficiency. Among all tested systems, the C6-PSBMA membrane achieved the highest performance, with average evaporation rates reaching 3.73, 2.27, and 1.75 kg/m<sup>2</sup>·h on DI water, BSA-spiked saline water, and seawater, respectively. Notably, after one month of continuous exposure to seawater, PSBMA-functionalized membranes showed only a 14.26% decline in performance, compared to 24.55% in unmodified membranes, confirming their long-term antifouling effectiveness. Ion content analysis of the collected condensate met the WHO drinking water standards. These results underscore the potential of MOF-zwitterionic polymer hybrid strategies to create robust, efficient, and durable membranes for practical solar desalination applications.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 18","pages":"12211–12219"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsapm.5c01693","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c01693","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar desalination presents a promising avenue for sustainable freshwater generation; however, fouling and long-term instability continue to pose significant challenges, particularly in complex marine environments. In this study, we introduce a solar-driven seawater evaporation membrane built on a glass fiber (GF) substrate, enhanced with a CAU-10-H metal–organic framework (MOF) layer to facilitate water transport, along with a composite photothermal top layer made of carbon black and dopamine hydrochloride (CB@DA). To tackle the fouling issue and enhance sustainability, we also grafted a zwitterionic PSBMA molecular brush onto the membrane surface, creating a hydration shield that resists biofouling and organic adhesion. Under simulated sunlight, membranes with stronger CAU-10-H binding exhibited higher evaporation efficiency. Among all tested systems, the C6-PSBMA membrane achieved the highest performance, with average evaporation rates reaching 3.73, 2.27, and 1.75 kg/m2·h on DI water, BSA-spiked saline water, and seawater, respectively. Notably, after one month of continuous exposure to seawater, PSBMA-functionalized membranes showed only a 14.26% decline in performance, compared to 24.55% in unmodified membranes, confirming their long-term antifouling effectiveness. Ion content analysis of the collected condensate met the WHO drinking water standards. These results underscore the potential of MOF-zwitterionic polymer hybrid strategies to create robust, efficient, and durable membranes for practical solar desalination applications.

高效防污太阳能海水淡化用mof -两性离子聚合物杂化膜
太阳能海水淡化为可持续淡水生产提供了一条很有前途的途径;然而,污垢和长期不稳定仍然构成重大挑战,特别是在复杂的海洋环境中。在这项研究中,我们介绍了一种太阳能驱动的海水蒸发膜,它建立在玻璃纤维(GF)衬底上,增强了cau10 - h金属有机框架(MOF)层,以促进水的输送,以及由炭黑和多巴胺盐酸盐制成的复合光热顶层(CB@DA)。为了解决污垢问题并提高可持续性,我们还在膜表面嫁接了两性离子PSBMA分子刷,形成了一个水合屏障,可以抵抗生物污垢和有机粘附。在模拟阳光下,CAU-10-H结合强度越强的膜蒸发效率越高。在所有测试系统中,C6-PSBMA膜的性能最好,在去离子水、添加bsa的盐水和海水上的平均蒸发速率分别达到3.73、2.27和1.75 kg/m2·h。值得注意的是,在连续暴露于海水一个月后,psbma功能化膜的性能仅下降14.26%,而未改性膜的性能下降24.55%,这证实了它们的长期防污效果。收集的冷凝水离子含量分析符合世界卫生组织饮用水标准。这些结果强调了mof -两性离子聚合物混合策略的潜力,可以为实际的太阳能脱盐应用创造坚固、高效和耐用的膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信