Spatiotemporal Regulation of Ion Transport via Photothermal Heating in Azobenzene-Based Polymer Networks

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Eun Suk Lee, , , Brandon C. Jeong, , , Parham Ghasemiahangarani, , , Kimberly Meléndez-Bonet, , , Longmei Ge, , , Theresa Schoetz*, , , Antonia Statt*, , and , Alexa S. Kuenstler*, 
{"title":"Spatiotemporal Regulation of Ion Transport via Photothermal Heating in Azobenzene-Based Polymer Networks","authors":"Eun Suk Lee,&nbsp;, ,&nbsp;Brandon C. Jeong,&nbsp;, ,&nbsp;Parham Ghasemiahangarani,&nbsp;, ,&nbsp;Kimberly Meléndez-Bonet,&nbsp;, ,&nbsp;Longmei Ge,&nbsp;, ,&nbsp;Theresa Schoetz*,&nbsp;, ,&nbsp;Antonia Statt*,&nbsp;, and ,&nbsp;Alexa S. Kuenstler*,&nbsp;","doi":"10.1021/acsapm.5c02412","DOIUrl":null,"url":null,"abstract":"<p >Azobenzene, a versatile molecule capable of reversible photoswitching between its <i>trans</i> and <i>cis</i> isomers upon exposure to specific wavelengths of light, presents unique opportunities to amplify molecular-level transformations into macroscopic property changes in polymers. Herein, we report an approach for modulating ionic conductivity in polymer networks using light by incorporating azobenzene photoswitches as pendant groups within poly(ethylene glycol) ionogels. While previous reports show that photoisomerization affects ion transport via changes in molecular interactions, we find that the photothermal effect dominates ionic conductivity modulation in polymer networks, enabling rapid and reversible conductivity enhancements under both UV and visible light. Our findings demonstrate a reversible enhancement of ionic conductivity by 40 to 110%, driven by localized heating from light-absorbing azobenzene moieties. These findings highlight promising implications for applications in flexible batteries, sensors, and actuators, where light-driven control of ion transport could offer advantages in device design and performance.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 18","pages":"12540–12549"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c02412","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Azobenzene, a versatile molecule capable of reversible photoswitching between its trans and cis isomers upon exposure to specific wavelengths of light, presents unique opportunities to amplify molecular-level transformations into macroscopic property changes in polymers. Herein, we report an approach for modulating ionic conductivity in polymer networks using light by incorporating azobenzene photoswitches as pendant groups within poly(ethylene glycol) ionogels. While previous reports show that photoisomerization affects ion transport via changes in molecular interactions, we find that the photothermal effect dominates ionic conductivity modulation in polymer networks, enabling rapid and reversible conductivity enhancements under both UV and visible light. Our findings demonstrate a reversible enhancement of ionic conductivity by 40 to 110%, driven by localized heating from light-absorbing azobenzene moieties. These findings highlight promising implications for applications in flexible batteries, sensors, and actuators, where light-driven control of ion transport could offer advantages in device design and performance.

Abstract Image

偶氮苯基聚合物网络中光热加热对离子传输的时空调控
偶氮苯是一种多用途分子,在暴露于特定波长的光下,能够在其反式和顺式异构体之间进行可逆的光转换,为放大聚合物中分子水平转化为宏观性质变化提供了独特的机会。在此,我们报告了一种利用光调制聚合物网络中离子电导率的方法,通过在聚乙二醇离子凝胶中加入偶氮苯光开关作为悬垂基团。虽然以前的报告表明,光异构化通过分子相互作用的变化影响离子传输,但我们发现光热效应主导了聚合物网络中的离子电导率调制,在紫外线和可见光下都能实现快速和可逆的电导率增强。我们的研究结果表明,在吸收光的偶氮苯部分的局部加热驱动下,离子电导率可逆地提高了40%至110%。这些发现强调了在柔性电池、传感器和执行器中的应用前景,其中光驱动离子传输控制可以在设备设计和性能方面提供优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信