Grant B. Douglas, Greg B. Davis, Kaveh Sookhak Lari, Elise Bekele, John Pengelly, Garth Watson, Mike Williams, Jason K. Kirby
{"title":"Field Measurement and Modelling of PFAS Leachability from a Contaminated Fire Training Area – Whole of Pad Response to Rainfall","authors":"Grant B. Douglas, Greg B. Davis, Kaveh Sookhak Lari, Elise Bekele, John Pengelly, Garth Watson, Mike Williams, Jason K. Kirby","doi":"10.1016/j.watres.2025.124669","DOIUrl":null,"url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) have historically infiltrated concrete and asphalt pavements where aqueous film forming foams (AFFF) were used. These pavements can act as long-term sources of PFAS-contaminated runoff, but their contribution is not well quantified. Over 230 rainfall-runoff samples were collected over 335 days from a PFAS-impacted fire training area (FTA) and analysed for 32 PFAS. Rainfall and discharge were monitored, with peak runoff at 1.75 L/s across ∼30 events. Average total PFAS concentrations in runoff events were similar over 11 months (typically 1.0–3.8 µg/L; PFOS 0.50–1.7 µg/L). Within flow events, concentrations decreased at high flows, likely due to dilution, and increased as flows subsided. Composition was consistent throughout, with PFOS dominant (40–60%) and PFHxS, 6:2 FTS, and PFHxA each ∼3–20%. Even after long dry periods, PFAS profiles were unchanged. Annual PFAS discharge was estimated at 75–380 mg/y, with uncertainty at low flows. PFAS at greater than 1 µg/L might discharge over centuries based on estimates of the total mass. Similarly, modelling showed that PFAS might discharge for many decades to centuries. Findings suggest that natural release rates may not meaningfully reduce PFAS discharges over time, thus informing decisions on whether active remediation (e.g., removal, sealing, or water treatment) is warranted at legacy sites.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"24 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.124669","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFAS) have historically infiltrated concrete and asphalt pavements where aqueous film forming foams (AFFF) were used. These pavements can act as long-term sources of PFAS-contaminated runoff, but their contribution is not well quantified. Over 230 rainfall-runoff samples were collected over 335 days from a PFAS-impacted fire training area (FTA) and analysed for 32 PFAS. Rainfall and discharge were monitored, with peak runoff at 1.75 L/s across ∼30 events. Average total PFAS concentrations in runoff events were similar over 11 months (typically 1.0–3.8 µg/L; PFOS 0.50–1.7 µg/L). Within flow events, concentrations decreased at high flows, likely due to dilution, and increased as flows subsided. Composition was consistent throughout, with PFOS dominant (40–60%) and PFHxS, 6:2 FTS, and PFHxA each ∼3–20%. Even after long dry periods, PFAS profiles were unchanged. Annual PFAS discharge was estimated at 75–380 mg/y, with uncertainty at low flows. PFAS at greater than 1 µg/L might discharge over centuries based on estimates of the total mass. Similarly, modelling showed that PFAS might discharge for many decades to centuries. Findings suggest that natural release rates may not meaningfully reduce PFAS discharges over time, thus informing decisions on whether active remediation (e.g., removal, sealing, or water treatment) is warranted at legacy sites.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.