Facile Decarbonylation Suppresses the Ortho Effect and Ketene Formation in the Catalytic Pyrolysis of Substituted Benzaldehyde Lignin Model Compounds

IF 3.6 2区 化学 Q1 CHEMISTRY, ORGANIC
Xiangkun Wu, , , Zeyou Pan, , , Zihao Zhang, , , Keyong Hou, , , Saša Bjelić, , , Andras Bodi, , and , Patrick Hemberger*, 
{"title":"Facile Decarbonylation Suppresses the Ortho Effect and Ketene Formation in the Catalytic Pyrolysis of Substituted Benzaldehyde Lignin Model Compounds","authors":"Xiangkun Wu,&nbsp;, ,&nbsp;Zeyou Pan,&nbsp;, ,&nbsp;Zihao Zhang,&nbsp;, ,&nbsp;Keyong Hou,&nbsp;, ,&nbsp;Saša Bjelić,&nbsp;, ,&nbsp;Andras Bodi,&nbsp;, and ,&nbsp;Patrick Hemberger*,&nbsp;","doi":"10.1021/acs.joc.5c01411","DOIUrl":null,"url":null,"abstract":"<p >Ketene intermediates lead to branching and lower phenol selectivities in the catalytic pyrolysis of lignin model compounds, which makes understanding their formation mechanism key to enable targeted process optimization. While gas-phase pyrolysis of methoxy- and hydroxy-substituted benzaldehydes favors fulvenone ketene formation, it is unclear if the same reaction pathways dominate in the presence of Brønsted acid sites. Thus, we tested if HZSM-5 produces fulvenone utilizing <i>operando</i> photoelectron photoion coincidence spectroscopy. Hydroxybenzaldehydes undergo acid-catalyzed decarbonylation, via oxonium mediated hydrogen transfer reactions, to phenol instead of dehydrogenation to fulvenone. The catalytic pyrolysis of anisaldehydes is initiated by demethylation and decarbonylation to yield anisole or hydroxybenzaldehydes and does not produce ketene either. Subsequently, decarbonylation and demethylation, respectively, lead to phenol and methylated derivatives due to abundant surface methyl groups over HZSM-5. Comparative analysis of the catalytic pyrolysis pathways of methoxyphenols and anisaldehydes, reveals that the chemistry of individual functional groups outcompetes the interactions of the vicinal substituents (<i>ortho</i> effect) in anis- and salicylaldehydes, resulting in the suppression of fulvenone ketene. We discuss how the high reactivity of aldehyde functionalities by decarbonylation may be leveraged to increase selectivities to value-added products.</p>","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"90 39","pages":"13802–13811"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.joc.5c01411","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.joc.5c01411","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Ketene intermediates lead to branching and lower phenol selectivities in the catalytic pyrolysis of lignin model compounds, which makes understanding their formation mechanism key to enable targeted process optimization. While gas-phase pyrolysis of methoxy- and hydroxy-substituted benzaldehydes favors fulvenone ketene formation, it is unclear if the same reaction pathways dominate in the presence of Brønsted acid sites. Thus, we tested if HZSM-5 produces fulvenone utilizing operando photoelectron photoion coincidence spectroscopy. Hydroxybenzaldehydes undergo acid-catalyzed decarbonylation, via oxonium mediated hydrogen transfer reactions, to phenol instead of dehydrogenation to fulvenone. The catalytic pyrolysis of anisaldehydes is initiated by demethylation and decarbonylation to yield anisole or hydroxybenzaldehydes and does not produce ketene either. Subsequently, decarbonylation and demethylation, respectively, lead to phenol and methylated derivatives due to abundant surface methyl groups over HZSM-5. Comparative analysis of the catalytic pyrolysis pathways of methoxyphenols and anisaldehydes, reveals that the chemistry of individual functional groups outcompetes the interactions of the vicinal substituents (ortho effect) in anis- and salicylaldehydes, resulting in the suppression of fulvenone ketene. We discuss how the high reactivity of aldehyde functionalities by decarbonylation may be leveraged to increase selectivities to value-added products.

Abstract Image

易脱碳抑制取代苯甲醛木质素模型化合物催化热解中的邻位效应和烯酮生成
在木质素模型化合物的催化热解过程中,烯酮中间体导致了分支和较低的苯酚选择性,这使得了解它们的形成机制成为实现有针对性的工艺优化的关键。虽然甲氧基和羟基取代的苯甲醛的气相热解有利于氟烯酮的形成,但在Brønsted酸位点存在时,相同的反应途径是否占主导地位尚不清楚。因此,我们利用operando光电子-光离子重合光谱测试了HZSM-5是否产生富尔芬酮。羟基苯甲醛通过氧鎓介导的氢转移反应进行酸催化脱碳,生成苯酚,而不是脱氢生成富烯酮。茴香醛的催化热解是由去甲基化和去羰基化引发的,得到茴香醚或羟基苯甲醛,也不产生烯酮。随后,由于HZSM-5表面有丰富的甲基,脱碳和去甲基化分别导致苯酚和甲基化衍生物。对比分析了甲氧基酚和八角茴香醛的催化热解途径,发现单官能团的化学性质优于邻位取代基(邻位效应)在anis-醛和水杨醛中的相互作用,导致fulvenone ketene的抑制。我们讨论了如何通过脱羰化醛官能团的高反应性来增加对增值产品的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Organic Chemistry
Journal of Organic Chemistry 化学-有机化学
CiteScore
6.20
自引率
11.10%
发文量
1467
审稿时长
2 months
期刊介绍: Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信