Adam J Broerman,Christoph Pollmann,Yang Zhao,Mauriz A Lichtenstein,Mark D Jackson,Maxx H Tessmer,Won Hee Ryu,Masato Ogishi,Mohamad H Abedi,Danny D Sahtoe,Aza Allen,Alex Kang,Joshmyn De La Cruz,Evans Brackenbrough,Banumathi Sankaran,Asim K Bera,Daniel M Zuckerman,Stefan Stoll,K Christopher Garcia,Florian Praetorius,Jacob Piehler,David Baker
{"title":"Design of facilitated dissociation enables timing of cytokine signalling.","authors":"Adam J Broerman,Christoph Pollmann,Yang Zhao,Mauriz A Lichtenstein,Mark D Jackson,Maxx H Tessmer,Won Hee Ryu,Masato Ogishi,Mohamad H Abedi,Danny D Sahtoe,Aza Allen,Alex Kang,Joshmyn De La Cruz,Evans Brackenbrough,Banumathi Sankaran,Asim K Bera,Daniel M Zuckerman,Stefan Stoll,K Christopher Garcia,Florian Praetorius,Jacob Piehler,David Baker","doi":"10.1038/s41586-025-09549-z","DOIUrl":null,"url":null,"abstract":"Protein design has focused on the design of ground states, ensuring that they are sufficiently low energy to be highly populated1. Designing the kinetics and dynamics of a system requires, in addition, the design of excited states that are traversed in transitions from one low-lying state to another2,3. This is a challenging task because such states must be sufficiently strained to be poorly populated, but not so strained that they are not populated at all, and because protein design methods have focused on generating near-ideal structures4-7. Here we describe a general approach for designing systems that use an induced-fit power stroke8 to generate a structurally frustrated9 and strained excited state, allosterically driving protein complex dissociation. X-ray crystallography, double electron-electron resonance spectroscopy and kinetic binding measurements show that incorporating excited states enables the design of effector-induced increases in dissociation rates as high as 5,700-fold. We highlight the power of this approach by designing rapid biosensors, kinetically controlled circuits and cytokine mimics that can be dissociated from their receptors within seconds, enabling dissection of the temporal dynamics of interleukin-2 signalling.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"94 1","pages":""},"PeriodicalIF":48.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09549-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Protein design has focused on the design of ground states, ensuring that they are sufficiently low energy to be highly populated1. Designing the kinetics and dynamics of a system requires, in addition, the design of excited states that are traversed in transitions from one low-lying state to another2,3. This is a challenging task because such states must be sufficiently strained to be poorly populated, but not so strained that they are not populated at all, and because protein design methods have focused on generating near-ideal structures4-7. Here we describe a general approach for designing systems that use an induced-fit power stroke8 to generate a structurally frustrated9 and strained excited state, allosterically driving protein complex dissociation. X-ray crystallography, double electron-electron resonance spectroscopy and kinetic binding measurements show that incorporating excited states enables the design of effector-induced increases in dissociation rates as high as 5,700-fold. We highlight the power of this approach by designing rapid biosensors, kinetically controlled circuits and cytokine mimics that can be dissociated from their receptors within seconds, enabling dissection of the temporal dynamics of interleukin-2 signalling.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.