Probing Surface Degradation Pathways of Charged Nickel-Oxide Cathode Materials Using Machine-Learning Interatomic Potentials

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Svenja Both, Andrey D. Poletayev, Timo Danner, Arnulf Latz, M. Saiful Islam
{"title":"Probing Surface Degradation Pathways of Charged Nickel-Oxide Cathode Materials Using Machine-Learning Interatomic Potentials","authors":"Svenja Both, Andrey D. Poletayev, Timo Danner, Arnulf Latz, M. Saiful Islam","doi":"10.1021/acsami.5c11818","DOIUrl":null,"url":null,"abstract":"While nickel-based layered oxide cathodes offer promising energy and power densities in lithium-ion batteries, they suffer from instability when fully delithiated upon charge. Ex situ studies often report a structural degradation of the charged cathode materials, but the precise mechanism is still poorly understood on the atomic scale. In this work, we combine high-level ab initio calculations with molecular dynamics using machine-learning interatomic potentials to study structural degradation of fully delithiated LiNiO<sub>2</sub> surfaces at the top of charge. We find a previously unreported, stable reconstruction of the (012) facet with more facile oxygen loss compared to the pristine surfaces. The oxygen vacancy formation energy closely corresponds to the experimental decomposition temperatures of charged cathodes. Furthermore, we use molecular dynamics simulations to sample Ni ion migration into alkali-layer sites that is a kinetically plausible initiation step for surface degradation toward thermodynamically stable products.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"94 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c11818","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While nickel-based layered oxide cathodes offer promising energy and power densities in lithium-ion batteries, they suffer from instability when fully delithiated upon charge. Ex situ studies often report a structural degradation of the charged cathode materials, but the precise mechanism is still poorly understood on the atomic scale. In this work, we combine high-level ab initio calculations with molecular dynamics using machine-learning interatomic potentials to study structural degradation of fully delithiated LiNiO2 surfaces at the top of charge. We find a previously unreported, stable reconstruction of the (012) facet with more facile oxygen loss compared to the pristine surfaces. The oxygen vacancy formation energy closely corresponds to the experimental decomposition temperatures of charged cathodes. Furthermore, we use molecular dynamics simulations to sample Ni ion migration into alkali-layer sites that is a kinetically plausible initiation step for surface degradation toward thermodynamically stable products.

Abstract Image

利用机器学习原子间电位探测带电镍氧化物正极材料的表面降解途径
虽然镍基层状氧化物阴极在锂离子电池中提供了有希望的能量和功率密度,但它们在充电时完全耗尽时存在不稳定性。非原位研究经常报道带电阴极材料的结构退化,但在原子尺度上的精确机制仍然知之甚少。在这项工作中,我们将高水平从头计算与分子动力学结合起来,使用机器学习原子间势来研究电荷顶部完全衰减的LiNiO2表面的结构降解。我们发现了一个以前未报道的,稳定重建的(012)关节面,与原始表面相比,更容易缺氧。氧空位形成能与带电阴极的实验分解温度密切相关。此外,我们使用分子动力学模拟来采样Ni离子迁移到碱层的位置,这是一个动力学上合理的起始步骤,表面降解为热力学稳定的产物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信