Quantum circuits for SU(3) lattice gauge theory

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Praveen Balaji, Cianán Conefrey-Shinozaki, Patrick Draper, Jason K. Elhaderi, Drishti Gupta, Luis Hidalgo, Andrew Lytle, Enrico Rinaldi
{"title":"Quantum circuits for SU(3) lattice gauge theory","authors":"Praveen Balaji, Cianán Conefrey-Shinozaki, Patrick Draper, Jason K. Elhaderi, Drishti Gupta, Luis Hidalgo, Andrew Lytle, Enrico Rinaldi","doi":"10.1103/k8f6-yft8","DOIUrl":null,"url":null,"abstract":"Lattice gauge theories in varying dimensions, lattice volumes, and truncations offer a rich family of targets for Hamiltonian simulation on quantum devices. In return, formulating quantum simulations can provide new ways of thinking about the quantum structure of gauge theories. In this work, we consider pure S</a:mi>U</a:mi>(</a:mo>3</a:mn>)</a:mo></a:math> gauge theory in two and three spatial dimensions in a streamlined version of the electric basis. We use a formulation of the theory that balances locality of the Hamiltonian and size of the gauge-invariant state space, and we classically pre-compute dictionaries of plaquette operator matrix elements for use in circuit construction. We build circuits for simulating time evolution on arbitrary lattice volumes, spanning circuits suitable for Noisy Intermediate-Scale Quantum era hardware to future fault-tolerant devices. Relative to spin models, time evolution in lattice gauge theories involves more complex local unitaries, and the Hilbert space of all quantum registers may have large unphysical subspaces. Based on these features, we develop general, volume-scalable tools for optimizing circuit depth, including pruning and fusion algorithms for collections of large multicontrolled unitaries. We describe scalings of quantum resources needed to simulate larger circuits and some directions for future algorithmic development.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"3 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/k8f6-yft8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice gauge theories in varying dimensions, lattice volumes, and truncations offer a rich family of targets for Hamiltonian simulation on quantum devices. In return, formulating quantum simulations can provide new ways of thinking about the quantum structure of gauge theories. In this work, we consider pure SU(3) gauge theory in two and three spatial dimensions in a streamlined version of the electric basis. We use a formulation of the theory that balances locality of the Hamiltonian and size of the gauge-invariant state space, and we classically pre-compute dictionaries of plaquette operator matrix elements for use in circuit construction. We build circuits for simulating time evolution on arbitrary lattice volumes, spanning circuits suitable for Noisy Intermediate-Scale Quantum era hardware to future fault-tolerant devices. Relative to spin models, time evolution in lattice gauge theories involves more complex local unitaries, and the Hilbert space of all quantum registers may have large unphysical subspaces. Based on these features, we develop general, volume-scalable tools for optimizing circuit depth, including pruning and fusion algorithms for collections of large multicontrolled unitaries. We describe scalings of quantum resources needed to simulate larger circuits and some directions for future algorithmic development.
SU(3)晶格规范理论的量子电路
不同维度、晶格体积和截断的晶格规范理论为量子器件上的哈密顿模拟提供了丰富的目标。反过来,表述量子模拟可以提供思考规范理论量子结构的新方法。在这项工作中,我们考虑纯SU(3)规范理论在二维和三维空间的流线型版本的电基。我们使用平衡哈密顿量局部性和规范不变状态空间大小的理论公式,并且我们经典地预先计算了用于电路构造的斑块算子矩阵元素字典。我们构建了在任意晶格体积上模拟时间演化的电路,涵盖了适用于噪声中等规模量子时代硬件到未来容错设备的电路。相对于自旋模型,晶格规范理论中的时间演化涉及更复杂的局部酉,所有量子寄存器的希尔伯特空间可能具有较大的非物理子空间。基于这些特征,我们开发了通用的,体积可扩展的工具来优化电路深度,包括大型多控制一元集合的修剪和融合算法。我们描述了模拟更大电路所需的量子资源的缩放以及未来算法发展的一些方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信