Extending robot minds through collective learning

IF 27.5 1区 计算机科学 Q1 ROBOTICS
Amanda Prorok
{"title":"Extending robot minds through collective learning","authors":"Amanda Prorok","doi":"10.1126/scirobotics.adv4049","DOIUrl":null,"url":null,"abstract":"<div >The current trend toward generalist robot behaviors with monolithic artificial intelligence (AI) models is unsustainable. I advocate for a paradigm shift that embraces distributed architectures for collective robotic intelligence. A modular “mixture-of-robots” approach with specialized interdependent components can achieve superlinear gains, offering benefits in scalability, adaptability, and learning complex interactive skills.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 106","pages":""},"PeriodicalIF":27.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.adv4049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adv4049","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The current trend toward generalist robot behaviors with monolithic artificial intelligence (AI) models is unsustainable. I advocate for a paradigm shift that embraces distributed architectures for collective robotic intelligence. A modular “mixture-of-robots” approach with specialized interdependent components can achieve superlinear gains, offering benefits in scalability, adaptability, and learning complex interactive skills.

Abstract Image

通过集体学习扩展机器人的思维
目前采用单一人工智能(AI)模型的通才机器人行为的趋势是不可持续的。我提倡一种范式转变,即为集体机器人智能提供分布式架构。具有专门的相互依赖组件的模块化“机器人混合”方法可以实现超线性增益,提供可伸缩性、适应性和学习复杂交互技能方面的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Robotics
Science Robotics Mathematics-Control and Optimization
CiteScore
30.60
自引率
2.80%
发文量
83
期刊介绍: Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals. Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信