{"title":"Signal Amplification Using Ab-AuNPs Integrated with LDI-MS Analysis for Diabetes Screening in Urine and Saliva","authors":"Li-Sin Tu, Tai-Wei Liu, He-Hsuan Hsiao","doi":"10.1039/d5lc00700c","DOIUrl":null,"url":null,"abstract":"The global prevalence of diabetes is rising at an alarming rate, making it the third leading cause of death worldwide. This study presented a user-friendly, straightforward, and non-invasive method for screening diabetes. Various antibody-conjugated boronic acid-modified gold nanoparticles (Ab-AuNPs) were prepared, including anti-HbA1c, anti-HBA1, anti-HSA, anti-gHSA, and anti-insulin, to enable the specific recognition of their corresponding antigens in single droplet samples of urine and saliva on nitrocellulose membranes, with subsequent analysis performed using laser desorption/ionization mass spectrometry (LDI-MS). Ab-AuNPs absorbed ultraviolet laser light, leading to the direct desorption and ionization of Au+ ions. This process eliminated the need for an additional organic matrix in matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS), effectively reduced interference from matrix-related ions, and significantly amplified the detection signal of Au+ ions at trace levels for targeted antigens in urine and saliva. The developed method revealed elevated levels of glycated proteins, including glycated hemoglobin (HbA1c) and glycated human serum albumin (gHSA), as well as human serum albumin (HSA), in diabetes patients compared to healthy individuals. In contrast, insulin levels were notably lower in diabetes patients. By analyzing these biomarker changes, we successfully identified the presence of diabetes. The reported method for screening diabetes in biological fluids provides a practical approach and holds significant promise for analyzing other diseases as corresponding biomarkers are discovered and their antibodies are developed and acquired in the future.","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":"26 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5lc00700c","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The global prevalence of diabetes is rising at an alarming rate, making it the third leading cause of death worldwide. This study presented a user-friendly, straightforward, and non-invasive method for screening diabetes. Various antibody-conjugated boronic acid-modified gold nanoparticles (Ab-AuNPs) were prepared, including anti-HbA1c, anti-HBA1, anti-HSA, anti-gHSA, and anti-insulin, to enable the specific recognition of their corresponding antigens in single droplet samples of urine and saliva on nitrocellulose membranes, with subsequent analysis performed using laser desorption/ionization mass spectrometry (LDI-MS). Ab-AuNPs absorbed ultraviolet laser light, leading to the direct desorption and ionization of Au+ ions. This process eliminated the need for an additional organic matrix in matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS), effectively reduced interference from matrix-related ions, and significantly amplified the detection signal of Au+ ions at trace levels for targeted antigens in urine and saliva. The developed method revealed elevated levels of glycated proteins, including glycated hemoglobin (HbA1c) and glycated human serum albumin (gHSA), as well as human serum albumin (HSA), in diabetes patients compared to healthy individuals. In contrast, insulin levels were notably lower in diabetes patients. By analyzing these biomarker changes, we successfully identified the presence of diabetes. The reported method for screening diabetes in biological fluids provides a practical approach and holds significant promise for analyzing other diseases as corresponding biomarkers are discovered and their antibodies are developed and acquired in the future.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.