Functional characterization of engineered bacterial biosensors for kynurenine detection.

Access microbiology Pub Date : 2025-08-08 eCollection Date: 2025-01-01 DOI:10.1099/acmi.0.001031.v5
Pisit Charoenwongwatthana, Halah Ahmed, Wojciech Cajdler, Jamie Coulter, Chien-Yi Chang
{"title":"Functional characterization of engineered bacterial biosensors for kynurenine detection.","authors":"Pisit Charoenwongwatthana, Halah Ahmed, Wojciech Cajdler, Jamie Coulter, Chien-Yi Chang","doi":"10.1099/acmi.0.001031.v5","DOIUrl":null,"url":null,"abstract":"<p><p>The kynurenine (KYN) pathway is the major catabolic pathway for tryptophan in humans, producing several metabolites that influence health. In clinical settings, KYN levels serve as a valuable biomarker for the diagnosis and prognosis of inflammatory and neurological diseases. Nevertheless, KYN detection relies on mass spectrometry analysis, which requires specialized knowledge and expertise with high operational costs. The bacterial biosensor presents as a promising tool for rapid and cost-effective targeted substance detection due to its ease of genetic modification. Therefore, this study aimed to develop an engineered bacterial biosensor by integrating a genetic module in a plasmid designed for KYN detection harboured in an <i>Escherichia coli</i> chassis. The KYN biosensing component in the genetic module encodes a KYN pathway regulator (KynR) from <i>Pseudomonas aeruginosa</i>, driven by the <i>P<sub>BAD</sub></i> arabinose-inducible promoter. Upon expression, KynR would bind to the exogenous KYN and the bacterial responding <i>kyn</i> promoter to express the downstream green fluorescent protein gene to emit a fluorescence signal. However, despite successful induction by arabinose and the presence of KYN, biosensors with different gene orientations and genetic components failed to produce a significant fluorescence signal. These findings suggest that the sensitivity of <i>P. aeruginosa</i> KynR is insufficient to detect physiological levels of KYN. Further exploration of alternative biological sensing components is warranted.</p>","PeriodicalId":94366,"journal":{"name":"Access microbiology","volume":"7 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12451312/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Access microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1099/acmi.0.001031.v5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The kynurenine (KYN) pathway is the major catabolic pathway for tryptophan in humans, producing several metabolites that influence health. In clinical settings, KYN levels serve as a valuable biomarker for the diagnosis and prognosis of inflammatory and neurological diseases. Nevertheless, KYN detection relies on mass spectrometry analysis, which requires specialized knowledge and expertise with high operational costs. The bacterial biosensor presents as a promising tool for rapid and cost-effective targeted substance detection due to its ease of genetic modification. Therefore, this study aimed to develop an engineered bacterial biosensor by integrating a genetic module in a plasmid designed for KYN detection harboured in an Escherichia coli chassis. The KYN biosensing component in the genetic module encodes a KYN pathway regulator (KynR) from Pseudomonas aeruginosa, driven by the PBAD arabinose-inducible promoter. Upon expression, KynR would bind to the exogenous KYN and the bacterial responding kyn promoter to express the downstream green fluorescent protein gene to emit a fluorescence signal. However, despite successful induction by arabinose and the presence of KYN, biosensors with different gene orientations and genetic components failed to produce a significant fluorescence signal. These findings suggest that the sensitivity of P. aeruginosa KynR is insufficient to detect physiological levels of KYN. Further exploration of alternative biological sensing components is warranted.

犬尿氨酸检测工程细菌生物传感器的功能表征。
犬尿氨酸(KYN)途径是人类色氨酸的主要分解代谢途径,产生几种影响健康的代谢物。在临床环境中,KYN水平作为炎症和神经系统疾病的诊断和预后的有价值的生物标志物。然而,KYN检测依赖于质谱分析,这需要专业知识和专业知识,操作成本高。细菌生物传感器由于其易于基因改造而成为一种有前途的快速、经济的目标物质检测工具。因此,本研究旨在开发一种工程细菌生物传感器,通过将遗传模块整合到大肠杆菌底盘中为KYN检测设计的质粒中。遗传模块中的KYN生物传感组件编码来自铜绿假单胞菌的KYN通路调节因子(KynR),由PBAD阿拉伯糖诱导启动子驱动。表达后,KynR结合外源KYN和应答的细菌KYN启动子表达下游绿色荧光蛋白基因,发出荧光信号。然而,尽管阿拉伯糖和KYN的存在成功诱导,具有不同基因取向和遗传成分的生物传感器未能产生显著的荧光信号。这些发现提示铜绿假单胞菌KynR的敏感性不足以检测生理水平的KYN。进一步探索替代生物传感元件是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信