{"title":"Weakly supervised peptide-TCR binding prediction facilitates neoantigen identification.","authors":"Yuli Gao, Yicheng Gao, Siqi Wu, Danlu Li, Chi Zhou, Fangliangzi Meng, Kejing Dong, Xueying Zhao, Ping Li, Aibin Liang, Qi Liu","doi":"10.1016/j.cels.2025.101403","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of T cell neoantigens is fundamental and computationally challenging in tumor immunotherapy study. Current prediction methods mainly focus on peptide properties, human leukocyte antigen (HLA) binding affinity, or single peptide-major histocompatibility complex-T cell receptor (pMHC-TCR) interactions, often overlooking the patient-specific TCR profile in evaluating neoantigen immunogenicity. This limited scope has constrained the performance and application of these tools in real-world settings for neoantigen identification. To address these limitations, we developed \"TCRBagger,\" a weakly supervised learning framework that uses the bagging of sample-specific TCR profiles to enhance personalized neoantigen identification. TCRBagger integrates three learning strategies-self-supervised, denoising, and multi-instance learning (MIL)-for modeling peptide-TCR binding to identify immunogenic neoantigens. Our comprehensive tests and applications reveal that TCRBagger outperforms existing tools by modeling peptide-TCR profile interactions, accordingly enhancing the capability of immunogenic neoantigen identification. Collectively, TCRBagger provides an unprecedented perspective and methodology for modeling the interaction between a peptide and patient-specific TCR profiles, facilitating neoantigen identification for personalized tumor immunotherapy. A record of this paper's Transparent Peer Review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101403"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The identification of T cell neoantigens is fundamental and computationally challenging in tumor immunotherapy study. Current prediction methods mainly focus on peptide properties, human leukocyte antigen (HLA) binding affinity, or single peptide-major histocompatibility complex-T cell receptor (pMHC-TCR) interactions, often overlooking the patient-specific TCR profile in evaluating neoantigen immunogenicity. This limited scope has constrained the performance and application of these tools in real-world settings for neoantigen identification. To address these limitations, we developed "TCRBagger," a weakly supervised learning framework that uses the bagging of sample-specific TCR profiles to enhance personalized neoantigen identification. TCRBagger integrates three learning strategies-self-supervised, denoising, and multi-instance learning (MIL)-for modeling peptide-TCR binding to identify immunogenic neoantigens. Our comprehensive tests and applications reveal that TCRBagger outperforms existing tools by modeling peptide-TCR profile interactions, accordingly enhancing the capability of immunogenic neoantigen identification. Collectively, TCRBagger provides an unprecedented perspective and methodology for modeling the interaction between a peptide and patient-specific TCR profiles, facilitating neoantigen identification for personalized tumor immunotherapy. A record of this paper's Transparent Peer Review process is included in the supplemental information.