Exploiting Multivariate Network Meta-Analysis: A Calibrated Bayesian Composite Likelihood Inference.

IF 2.5 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yifei Wang, Lifeng Lin, Yu-Lun Liu
{"title":"Exploiting Multivariate Network Meta-Analysis: A Calibrated Bayesian Composite Likelihood Inference.","authors":"Yifei Wang, Lifeng Lin, Yu-Lun Liu","doi":"10.1214/25-ba1511","DOIUrl":null,"url":null,"abstract":"<p><p>Multivariate network meta-analysis has emerged as a powerful tool for evidence synthesis by incorporating multiple outcomes and treatments. Despite its advantages, this method comes with methodological challenges, such as the issue of unreported within-study correlations among treatments and outcomes, which can lead to biased estimates and misleading conclusions. In this paper, we propose a calibrated Bayesian composite likelihood approach to overcome this limitation. The proposed method eliminates the need for a fully specified likelihood function while allowing for the unavailability of within-study correlations among treatments and outcomes. Additionally, we developed a hybrid Gibbs sampler algorithm along with the Open-Faced Sandwich post-sampling adjustment to enable robust posterior inference. Through comprehensive simulation studies, we demonstrated that the proposed approach yields unbiased estimates while maintaining coverage probabilities close to the nominal levels. We implemented the proposed method to two real-world network meta-analysis datasets: one comparing treatment procedures for root coverage and the other comparing treatments for anemia in patients with chronic kidney disease.</p>","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453069/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/25-ba1511","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate network meta-analysis has emerged as a powerful tool for evidence synthesis by incorporating multiple outcomes and treatments. Despite its advantages, this method comes with methodological challenges, such as the issue of unreported within-study correlations among treatments and outcomes, which can lead to biased estimates and misleading conclusions. In this paper, we propose a calibrated Bayesian composite likelihood approach to overcome this limitation. The proposed method eliminates the need for a fully specified likelihood function while allowing for the unavailability of within-study correlations among treatments and outcomes. Additionally, we developed a hybrid Gibbs sampler algorithm along with the Open-Faced Sandwich post-sampling adjustment to enable robust posterior inference. Through comprehensive simulation studies, we demonstrated that the proposed approach yields unbiased estimates while maintaining coverage probabilities close to the nominal levels. We implemented the proposed method to two real-world network meta-analysis datasets: one comparing treatment procedures for root coverage and the other comparing treatments for anemia in patients with chronic kidney disease.

利用多元网络元分析:校准贝叶斯复合似然推断。
多元网络荟萃分析已成为证据综合的有力工具,通过纳入多种结果和治疗。尽管有其优势,但该方法也面临着方法学上的挑战,例如未报告的研究内治疗和结果之间的相关性问题,这可能导致有偏见的估计和误导性的结论。在本文中,我们提出了一种校正贝叶斯复合似然方法来克服这一限制。提出的方法消除了对完全指定的似然函数的需要,同时允许治疗和结果之间的研究内相关性不可用。此外,我们开发了一种混合Gibbs采样器算法以及开放式三明治采样后调整,以实现鲁棒后验推理。通过全面的模拟研究,我们证明了所提出的方法在保持覆盖概率接近名义水平的同时产生无偏估计。我们在两个现实世界的网络荟萃分析数据集上实施了提出的方法:一个比较根覆盖的治疗方法,另一个比较慢性肾病患者贫血的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信