Ruolan Qian, Yuchen Guo, Xiaolin Hu, Jing Ling, Haigang Geng, Qiaoqiao Ye, Linmeng Zhang, Shujie Zhan, Long Liao, Yang Ge, Quan Zheng, Ying Cao
{"title":"PTEN loss and ERBB2/ERBB3-mediated AKT reactivation drive resistance to MET inhibition in MET-amplified hepatocellular carcinoma.","authors":"Ruolan Qian, Yuchen Guo, Xiaolin Hu, Jing Ling, Haigang Geng, Qiaoqiao Ye, Linmeng Zhang, Shujie Zhan, Long Liao, Yang Ge, Quan Zheng, Ying Cao","doi":"10.1007/s13402-025-01097-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma (HCC) remains a therapeutic challenge due to limited treatment options and frequent resistance to targeted therapies. MET amplification is a promising therapeutic target in a subset of HCC. However, mechanisms of resistance to MET inhibitors are not fully understood, impeding the efficacy of treatments.</p><p><strong>Methods: </strong>We performed a genome-wide CRISPR-Cas9 screen to identify genetic determinants of resistance to MET inhibitors. The efficacy of selective MET inhibitors, including capmatinib and tepotinib, was evaluated in MET-amplified HCC models. Mechanistic studies were conducted to characterize AKT signaling dynamics and tumour cell responses under various treatment conditions.</p><p><strong>Results: </strong>MET inhibitors selectively suppressed tumour growth in MET-amplified HCC. However, PTEN deficiency sustained AKT activation despite MET blockade, facilitating tumour survival. Moreover, MET inhibitor treatment triggered adaptive upregulation of ERBB2/ERBB3, leading to AKT reactivation and resistance. Combined inhibition of MET and AKT or ERBB kinases synergistically restored therapeutic response and induced apoptosis. These resistance mechanisms also reduced the efficacy of cabozantinib. Notably, neither combination was effective in MET-high non-amplified HCC.</p><p><strong>Conclusion: </strong>Our study identifies PTEN deficiency and ERBB2/ERBB3-mediated reactivation as key resistance mechanisms to MET inhibition in MET-amplified HCC. The findings support biomarker-informed combination strategies and underscore the importance of stratifying patients based on MET amplification status.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01097-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hepatocellular carcinoma (HCC) remains a therapeutic challenge due to limited treatment options and frequent resistance to targeted therapies. MET amplification is a promising therapeutic target in a subset of HCC. However, mechanisms of resistance to MET inhibitors are not fully understood, impeding the efficacy of treatments.
Methods: We performed a genome-wide CRISPR-Cas9 screen to identify genetic determinants of resistance to MET inhibitors. The efficacy of selective MET inhibitors, including capmatinib and tepotinib, was evaluated in MET-amplified HCC models. Mechanistic studies were conducted to characterize AKT signaling dynamics and tumour cell responses under various treatment conditions.
Results: MET inhibitors selectively suppressed tumour growth in MET-amplified HCC. However, PTEN deficiency sustained AKT activation despite MET blockade, facilitating tumour survival. Moreover, MET inhibitor treatment triggered adaptive upregulation of ERBB2/ERBB3, leading to AKT reactivation and resistance. Combined inhibition of MET and AKT or ERBB kinases synergistically restored therapeutic response and induced apoptosis. These resistance mechanisms also reduced the efficacy of cabozantinib. Notably, neither combination was effective in MET-high non-amplified HCC.
Conclusion: Our study identifies PTEN deficiency and ERBB2/ERBB3-mediated reactivation as key resistance mechanisms to MET inhibition in MET-amplified HCC. The findings support biomarker-informed combination strategies and underscore the importance of stratifying patients based on MET amplification status.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.