Machine Learning-Based Prediction of Quality of Life Improvement After Surgery for Spinal Metastases: A Prospective Multicenter Study.

IF 3.5 2区 医学 Q2 CLINICAL NEUROLOGY
Spine Pub Date : 2025-10-15 Epub Date: 2025-04-16 DOI:10.1097/BRS.0000000000005367
Kyota Kitagawa, Satoshi Maki, Yuki Shiratani, Akinobu Suzuki, Koji Tamai, Takaki Shimizu, Kenichiro Kakutani, Yutaro Kanda, Hiroyuki Tominaga, Ichiro Kawamura, Masayuki Ishihara, Masaaki Paku, Yohei Takahashi, Toru Funayama, Kousei Miura, Eiki Shirasawa, Hirokazu Inoue, Atsushi Kimura, Takuya Iimura, Hiroshi Moridaira, Hideaki Nakajima, Shuji Watanabe, Koji Akeda, Norihiko Takegami, Kazuo Nakanishi, Hirokatsu Sawada, Koji Matsumoto, Masahiro Funaba, Hidenori Suzuki, Haruki Funao, Tsutomu Oshigiri, Takashi Hirai, Bungo Otsuki, Kazu Kobayakawa, Koji Uotani, Koichi Sairyo, Shinji Tanishima, Ko Hashimoto, Chizuo Iwai, Daisuke Yamabe, Akihiko Hiyama, Shoji Seki, Kenji Kato, Masashi Miyazaki, Kazuyuki Watanabe, Toshio Nakamae, Takashi Kaito, Hiroaki Nakashima, Narihito Nagoshi, Satoshi Kato, Shiro Imagama, Kota Watanabe, Seiji Ohtori, Gen Inoue, Takeo Furuya
{"title":"Machine Learning-Based Prediction of Quality of Life Improvement After Surgery for Spinal Metastases: A Prospective Multicenter Study.","authors":"Kyota Kitagawa, Satoshi Maki, Yuki Shiratani, Akinobu Suzuki, Koji Tamai, Takaki Shimizu, Kenichiro Kakutani, Yutaro Kanda, Hiroyuki Tominaga, Ichiro Kawamura, Masayuki Ishihara, Masaaki Paku, Yohei Takahashi, Toru Funayama, Kousei Miura, Eiki Shirasawa, Hirokazu Inoue, Atsushi Kimura, Takuya Iimura, Hiroshi Moridaira, Hideaki Nakajima, Shuji Watanabe, Koji Akeda, Norihiko Takegami, Kazuo Nakanishi, Hirokatsu Sawada, Koji Matsumoto, Masahiro Funaba, Hidenori Suzuki, Haruki Funao, Tsutomu Oshigiri, Takashi Hirai, Bungo Otsuki, Kazu Kobayakawa, Koji Uotani, Koichi Sairyo, Shinji Tanishima, Ko Hashimoto, Chizuo Iwai, Daisuke Yamabe, Akihiko Hiyama, Shoji Seki, Kenji Kato, Masashi Miyazaki, Kazuyuki Watanabe, Toshio Nakamae, Takashi Kaito, Hiroaki Nakashima, Narihito Nagoshi, Satoshi Kato, Shiro Imagama, Kota Watanabe, Seiji Ohtori, Gen Inoue, Takeo Furuya","doi":"10.1097/BRS.0000000000005367","DOIUrl":null,"url":null,"abstract":"<p><strong>Study design: </strong>A prospective multicenter cohort study.</p><p><strong>Objective: </strong>To develop and validate machine learning models for predicting health-related quality of life (HRQoL) improvements in patients after one month and six months of surgery for spinal metastases.</p><p><strong>Summary of background data: </strong>The prediction of postoperative HRQoL of spinal metastases surgery remains understudied compared with studies of survival outcomes.</p><p><strong>Methods: </strong>We analyzed data from 413 patients who underwent surgery for spinal metastases at 40 participating institutions in Japan. The primary outcome was HRQoL improvement, defined as an increase in the EuroQol 5-Dimension 5-Level (EQ-5D) utility value of ≥0.32 from baseline. We developed two models for 1-month (n=360) and 6-month (n=189) outcomes using various machine learning algorithms. Missing values were imputed, and feature selection was performed using recursive feature elimination with cross-validation. We split the data into training (80%) and test (20%) sets for each model. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, precision, and F1-score. SHapley Additive exPlanations (SHAP) analysis was used to interpret feature importance.</p><p><strong>Results: </strong>The 6-month model outperformed the 1-month model across all metrics. For 1-month predictions, Logistic Regression achieved an AUC of 0.8136 and an accuracy of 0.7639 on the test set. For 6-month predictions, Naive Bayes demonstrated an AUC of 0.8928 and an accuracy of 0.8684. The 1-month model used 12 features, while the 6-month model required seven. SHAP analysis revealed that EQ-5D Mobility was the most influential feature in both models.</p><p><strong>Conclusions: </strong>Our models demonstrate high predictive accuracy for HRQoL improvements following spinal metastases surgery, with superior performance of the 6-month model. These models could enhance clinical decision-making and patient counseling by providing personalized predictions of postoperative QoL. Future research should focus on external validation and integration of these models into clinical practice.</p>","PeriodicalId":22193,"journal":{"name":"Spine","volume":"50 20","pages":"1410-1419"},"PeriodicalIF":3.5000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/BRS.0000000000005367","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Study design: A prospective multicenter cohort study.

Objective: To develop and validate machine learning models for predicting health-related quality of life (HRQoL) improvements in patients after one month and six months of surgery for spinal metastases.

Summary of background data: The prediction of postoperative HRQoL of spinal metastases surgery remains understudied compared with studies of survival outcomes.

Methods: We analyzed data from 413 patients who underwent surgery for spinal metastases at 40 participating institutions in Japan. The primary outcome was HRQoL improvement, defined as an increase in the EuroQol 5-Dimension 5-Level (EQ-5D) utility value of ≥0.32 from baseline. We developed two models for 1-month (n=360) and 6-month (n=189) outcomes using various machine learning algorithms. Missing values were imputed, and feature selection was performed using recursive feature elimination with cross-validation. We split the data into training (80%) and test (20%) sets for each model. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, precision, and F1-score. SHapley Additive exPlanations (SHAP) analysis was used to interpret feature importance.

Results: The 6-month model outperformed the 1-month model across all metrics. For 1-month predictions, Logistic Regression achieved an AUC of 0.8136 and an accuracy of 0.7639 on the test set. For 6-month predictions, Naive Bayes demonstrated an AUC of 0.8928 and an accuracy of 0.8684. The 1-month model used 12 features, while the 6-month model required seven. SHAP analysis revealed that EQ-5D Mobility was the most influential feature in both models.

Conclusions: Our models demonstrate high predictive accuracy for HRQoL improvements following spinal metastases surgery, with superior performance of the 6-month model. These models could enhance clinical decision-making and patient counseling by providing personalized predictions of postoperative QoL. Future research should focus on external validation and integration of these models into clinical practice.

基于机器学习的脊柱转移术后生活质量改善预测:一项前瞻性多中心研究。
研究设计:前瞻性多中心队列研究。目的:开发和验证机器学习模型,用于预测脊柱转移手术后1个月和6个月患者健康相关生活质量(HRQoL)的改善。背景资料总结:与生存结果的研究相比,对脊柱转移手术术后HRQoL的预测仍有待研究。方法:我们分析了来自日本40家参与机构的413例脊柱转移手术患者的数据。主要终点是HRQoL改善,定义为EuroQol 5-Dimension 5-Level (EQ-5D)效用值较基线增加≥0.32。我们使用不同的机器学习算法开发了两个1个月(n=360)和6个月(n=189)结果的模型。输入缺失值,并使用递归特征消除和交叉验证进行特征选择。我们将每个模型的数据分成训练集(80%)和测试集(20%)。使用受试者工作特征曲线下面积(AUC)、准确度、精密度和f1评分来评估模型的性能。SHapley加性解释(SHAP)分析用于解释特征重要性。结果:6个月的模型在所有指标上优于1个月的模型。对于1个月的预测,Logistic回归在测试集上的AUC为0.8136,准确率为0.7639。对于6个月的预测,朴素贝叶斯的AUC为0.8928,准确率为0.8684。1个月的模型使用了12个功能,而6个月的模型需要7个功能。SHAP分析显示,EQ-5D机动性是两种车型中最具影响力的特征。结论:我们的模型对脊柱转移手术后HRQoL的改善具有很高的预测准确性,6个月模型的表现更佳。这些模型可以通过提供个性化的术后生活质量预测来增强临床决策和患者咨询。未来的研究应侧重于外部验证和将这些模型整合到临床实践中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spine
Spine 医学-临床神经学
CiteScore
5.90
自引率
6.70%
发文量
361
审稿时长
6.0 months
期刊介绍: Lippincott Williams & Wilkins is a leading international publisher of professional health information for physicians, nurses, specialized clinicians and students. For a complete listing of titles currently published by Lippincott Williams & Wilkins and detailed information about print, online, and other offerings, please visit the LWW Online Store. Recognized internationally as the leading journal in its field, Spine is an international, peer-reviewed, bi-weekly periodical that considers for publication original articles in the field of Spine. It is the leading subspecialty journal for the treatment of spinal disorders. Only original papers are considered for publication with the understanding that they are contributed solely to Spine. The Journal does not publish articles reporting material that has been reported at length elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信