Routine RNA-based analysis of potential splicing variants facilitates genomic diagnostics and reveals limitations of in silico prediction tools.

IF 3.6 Q2 GENETICS & HEREDITY
Mark Drost, Jordy Dekker, Federico Ferraro, Esmee Kasteleijn, Marije Verschuren, Evelien Kroon, Hannie C W Douben, Inte Vogt, Leontine van Unen, Marianne Hoogeveen-Westerveld, Peter Elfferich, Rachel Schot, Camilla Calandrini, Esther Korpershoek, Frank Sleutels, Hennie B R Brüggenwirth, Iris R Hollink, Lisette Meerstein-Kessel, Lies H Hoefsloot, Marjon van Slegtenhorst, Martina Wilke, Marjolein J A Weerts, Rick van Minkelen, Anja Wagner, Arjan Bouman, Barbara W van Paassen, Grazia M Verheijen-Mancini, Ingrid M B H van de Laar, Anneke J A Kievit, Judith M A Verhagen, Kyra E Stuurman, Laura Donker Kaat, Marieke F van Dooren, Marja W Wessels, Rogier A Oldenburg, Shimriet Zeidler, Tessa van Dijk, Tahsin Stefan Barakat, Virginie J M Verhoeven, Yolande van Bever, Yvette van Ierland, Natalja Bannink, Silvana van Koningsbruggen, Phillis Lakeman, Lisette Leeuwen, Nienke E Verbeek, Margje Sinnema, Malou Heijligers, Christi J van Asperen, Jasper J Saris, Mark Nellist, Tjakko J van Ham
{"title":"Routine RNA-based analysis of potential splicing variants facilitates genomic diagnostics and reveals limitations of in silico prediction tools.","authors":"Mark Drost, Jordy Dekker, Federico Ferraro, Esmee Kasteleijn, Marije Verschuren, Evelien Kroon, Hannie C W Douben, Inte Vogt, Leontine van Unen, Marianne Hoogeveen-Westerveld, Peter Elfferich, Rachel Schot, Camilla Calandrini, Esther Korpershoek, Frank Sleutels, Hennie B R Brüggenwirth, Iris R Hollink, Lisette Meerstein-Kessel, Lies H Hoefsloot, Marjon van Slegtenhorst, Martina Wilke, Marjolein J A Weerts, Rick van Minkelen, Anja Wagner, Arjan Bouman, Barbara W van Paassen, Grazia M Verheijen-Mancini, Ingrid M B H van de Laar, Anneke J A Kievit, Judith M A Verhagen, Kyra E Stuurman, Laura Donker Kaat, Marieke F van Dooren, Marja W Wessels, Rogier A Oldenburg, Shimriet Zeidler, Tessa van Dijk, Tahsin Stefan Barakat, Virginie J M Verhoeven, Yolande van Bever, Yvette van Ierland, Natalja Bannink, Silvana van Koningsbruggen, Phillis Lakeman, Lisette Leeuwen, Nienke E Verbeek, Margje Sinnema, Malou Heijligers, Christi J van Asperen, Jasper J Saris, Mark Nellist, Tjakko J van Ham","doi":"10.1016/j.xhgg.2025.100521","DOIUrl":null,"url":null,"abstract":"<p><p>DNA variants affecting pre-mRNA splicing are an important cause of genetic disorders and remain challenging to interpret without experimental data. Although variant classification guidelines recommend experimental characterization of variant splicing effects, the added value of routine diagnostic investigation of patient mRNA splicing has not been systematically described. Here, we assessed the utility of pre-mRNA splicing analysis in a diagnostic setting for 202 suspected splice-altering variants from individuals referred for genetic testing. Pre-mRNA splicing was assessed in patient cells by RT-PCR, followed by agarose gel electrophoresis and Sanger sequencing and/or exon trapping assays. An effect on pre-mRNA splicing was demonstrated in 63% (n = 128/202) of the tested variants. Among the 177 variants initially classified as variants of uncertain significance (VUS), 54% (n = 96/177) were reclassified based on pre-mRNA splicing analysis, including 48% (n = 85/177) that were upgraded to likely pathogenic or pathogenic. We benchmarked the splice prediction algorithms SpliceAI, SQUIRLS, SPiP, and Pangolin, the tools integrated in Alamut on this clinically relevant and experimentally validated dataset, and the CAGI6 splicing VUS dataset and found variable performance dependent on variant type and location. No single tool classified all variants equally well. We describe several examples of hard-to-predict effects and unexpected results highlighting the limitations of prediction tools, including a not previously described variant type affecting U12-splice site subtype. In summary, we provide a framework for RNA-based analysis in a molecular diagnostic setting, demonstrate the added value of routine testing of RNA from individuals with suspected splice-altering variants, and highlight the limitations of in silico prediction tools.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100521"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA variants affecting pre-mRNA splicing are an important cause of genetic disorders and remain challenging to interpret without experimental data. Although variant classification guidelines recommend experimental characterization of variant splicing effects, the added value of routine diagnostic investigation of patient mRNA splicing has not been systematically described. Here, we assessed the utility of pre-mRNA splicing analysis in a diagnostic setting for 202 suspected splice-altering variants from individuals referred for genetic testing. Pre-mRNA splicing was assessed in patient cells by RT-PCR, followed by agarose gel electrophoresis and Sanger sequencing and/or exon trapping assays. An effect on pre-mRNA splicing was demonstrated in 63% (n = 128/202) of the tested variants. Among the 177 variants initially classified as variants of uncertain significance (VUS), 54% (n = 96/177) were reclassified based on pre-mRNA splicing analysis, including 48% (n = 85/177) that were upgraded to likely pathogenic or pathogenic. We benchmarked the splice prediction algorithms SpliceAI, SQUIRLS, SPiP, and Pangolin, the tools integrated in Alamut on this clinically relevant and experimentally validated dataset, and the CAGI6 splicing VUS dataset and found variable performance dependent on variant type and location. No single tool classified all variants equally well. We describe several examples of hard-to-predict effects and unexpected results highlighting the limitations of prediction tools, including a not previously described variant type affecting U12-splice site subtype. In summary, we provide a framework for RNA-based analysis in a molecular diagnostic setting, demonstrate the added value of routine testing of RNA from individuals with suspected splice-altering variants, and highlight the limitations of in silico prediction tools.

常规基于rna的潜在剪接变异体分析有助于基因组诊断,并揭示了计算机预测工具的局限性。
影响前mrna剪接的DNA变异是遗传疾病的重要原因,在没有实验数据的情况下解释仍然具有挑战性。尽管变体分类指南建议对变体剪接效应进行实验表征,但对患者mRNA剪接的常规诊断调查的附加价值尚未得到系统描述。在这里,我们评估了pre-mRNA剪接分析在202个疑似剪接改变变异的诊断设置中的效用,这些变异来自于接受基因检测的个体。通过RT-PCR评估患者细胞中的Pre-mRNA剪接,然后进行琼脂糖凝胶电泳和Sanger测序,和/或外显子捕获测定。63% (n=128/202)的被测变异对前mrna剪接有影响。在最初被分类为不确定意义变异(VUS)的177个变异中,54% (n=96/177)根据mrna前剪接分析被重新分类,其中48% (n=85/177)被升级为可能致病或致病。我们对SpliceAI、Squirls、SPiP、穿山甲等剪接预测算法以及集成在Alamut中的工具在该临床相关和实验验证的数据集以及CAGI6剪接VUS数据集上进行了基准测试,发现不同类型和位置的剪接预测性能不同。没有一种工具能同样准确地分类所有的变异。我们描述了几个难以预测的影响和意想不到的结果的例子,突出了预测工具的局限性,包括以前未描述的影响u12剪接位点亚型的变异类型。总之,我们为分子诊断环境中基于RNA的分析提供了一个框架,证明了对疑似剪接改变变异个体的RNA进行常规检测的附加价值,并强调了硅预测工具的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信