Orthotropic characterization of trabecular bone remodeling in human femur: A biomechanical study.

IF 1.5 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Ankan Hazra, Souptick Chanda, Debabrata Chakraborty
{"title":"Orthotropic characterization of trabecular bone remodeling in human femur: A biomechanical study.","authors":"Ankan Hazra, Souptick Chanda, Debabrata Chakraborty","doi":"10.1177/09544119251375787","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional bone adaptation algorithms considering bone as isotropic, though explain bone density distribution but fail to account for the complex trabecular microarchitecture and mechanical significance of bone material characterization. This study enhances predictions of spatio-temporal adaptation of femoral trabecular structure by utilizing an orthotropic material model. A bone remodeling algorithm using finite element analysis was developed to precisely assess the element-wise material properties and its local orientation within the femur. The orthopedic simulations incorporated a multiple loading scheme reflecting a wide range of daily locomotor activities, thereby providing a more comprehensive evaluation of bone adaptation. The simulations could effectively capture the material directions, directional stiffnesses and density distributions, aligning closely with the actual morphology of the femur. Findings from the present simulations highlight the differential impact of total hip arthroplasty (THA) on peri-prosthetic bone remodeling. By integrating an orthotropic material model, this study offers profound insights into the bone remodeling processes post-THA. This approach, by capturing the directionality and complex mechanical behavior of bone, improves predictions of post-surgical bone growth and healing, contributing to improved outcomes in THA. The findings underscore the importance of considering multiple loading scenarios and patient-specific factors in predicting bone response and optimizing clinical outcomes.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"872-884"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251375787","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional bone adaptation algorithms considering bone as isotropic, though explain bone density distribution but fail to account for the complex trabecular microarchitecture and mechanical significance of bone material characterization. This study enhances predictions of spatio-temporal adaptation of femoral trabecular structure by utilizing an orthotropic material model. A bone remodeling algorithm using finite element analysis was developed to precisely assess the element-wise material properties and its local orientation within the femur. The orthopedic simulations incorporated a multiple loading scheme reflecting a wide range of daily locomotor activities, thereby providing a more comprehensive evaluation of bone adaptation. The simulations could effectively capture the material directions, directional stiffnesses and density distributions, aligning closely with the actual morphology of the femur. Findings from the present simulations highlight the differential impact of total hip arthroplasty (THA) on peri-prosthetic bone remodeling. By integrating an orthotropic material model, this study offers profound insights into the bone remodeling processes post-THA. This approach, by capturing the directionality and complex mechanical behavior of bone, improves predictions of post-surgical bone growth and healing, contributing to improved outcomes in THA. The findings underscore the importance of considering multiple loading scenarios and patient-specific factors in predicting bone response and optimizing clinical outcomes.

人类股骨小梁骨重塑的正交异性特征:一项生物力学研究。
传统的骨适应算法将骨视为各向同性,虽然解释了骨密度分布,但未能解释复杂的骨小梁微结构和骨材料表征的力学意义。本研究利用正交各向异性材料模型增强了股骨小梁结构时空适应性的预测。开发了一种使用有限元分析的骨重塑算法,以精确评估单元材料特性及其在股骨内的局部方向。骨科模拟纳入了多种负荷方案,反映了广泛的日常运动活动,从而提供了更全面的骨适应评估。模拟可以有效地捕捉到材料方向、方向刚度和密度分布,与股骨的实际形态非常吻合。目前的模拟结果强调了全髋关节置换术(THA)对假体周围骨重塑的不同影响。通过整合正交异性材料模型,本研究为tha后骨重塑过程提供了深刻的见解。这种方法通过捕捉骨的方向性和复杂的力学行为,提高了对术后骨生长和愈合的预测,有助于改善THA的预后。研究结果强调了在预测骨反应和优化临床结果时考虑多种负荷情景和患者特异性因素的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信