{"title":"Category-specific perceptual learning of robust object recognition modelled using deep neural networks.","authors":"Hojin Jang, Frank Tong","doi":"10.1371/journal.pcbi.1013529","DOIUrl":null,"url":null,"abstract":"<p><p>Object recognition in real-world environments requires dealing with considerable ambiguity, yet the human visual system is highly robust to noisy viewing conditions. Here, we investigated the role of perceptual learning in the acquisition of robustness in both humans and deep neural networks (DNNs). Specifically, we sought to determine whether perceptual training with object images in Gaussian noise, drawn from certain animate or inanimate categories, would lead to category-specific or category-general improvements in human robustness. Moreover, might DNNs provide viable models of human perceptual learning? Both before and after training, we evaluated the noise threshold required for accurate recognition using novel object images. Human observers were quite robust to noise before training, but showed additional category-specific improvement after training with only a few hundred noisy object examples. In comparison, standard DNNs initially lacked robustness, then showed both category-general and category-specific learning after training with the same noisy examples. We further evaluated DNN models that were pre-trained with moderately noisy images to match human pre-training accuracy. Notably, these models only showed category-specific improvement, matching the overall pattern of learning exhibited by human observers. A layer-wise analysis of DNN responses revealed that category-general learning effects emerged in the lower layers, whereas category-specific improvements emerged in the higher layers. Our findings provide support for the notion that robustness to noisy visual conditions arises through learning, humans likely acquire robustness from everyday encounters with real-world noise, and additional category-specific improvements exhibited by humans and DNNs involve learning at higher levels of visual representation.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 9","pages":"e1013529"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12478885/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013529","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Object recognition in real-world environments requires dealing with considerable ambiguity, yet the human visual system is highly robust to noisy viewing conditions. Here, we investigated the role of perceptual learning in the acquisition of robustness in both humans and deep neural networks (DNNs). Specifically, we sought to determine whether perceptual training with object images in Gaussian noise, drawn from certain animate or inanimate categories, would lead to category-specific or category-general improvements in human robustness. Moreover, might DNNs provide viable models of human perceptual learning? Both before and after training, we evaluated the noise threshold required for accurate recognition using novel object images. Human observers were quite robust to noise before training, but showed additional category-specific improvement after training with only a few hundred noisy object examples. In comparison, standard DNNs initially lacked robustness, then showed both category-general and category-specific learning after training with the same noisy examples. We further evaluated DNN models that were pre-trained with moderately noisy images to match human pre-training accuracy. Notably, these models only showed category-specific improvement, matching the overall pattern of learning exhibited by human observers. A layer-wise analysis of DNN responses revealed that category-general learning effects emerged in the lower layers, whereas category-specific improvements emerged in the higher layers. Our findings provide support for the notion that robustness to noisy visual conditions arises through learning, humans likely acquire robustness from everyday encounters with real-world noise, and additional category-specific improvements exhibited by humans and DNNs involve learning at higher levels of visual representation.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.