Trans-Cinnamaldehyde-Driven Silver Nanoparticles: Dual Role in Targeting Biofilm Disruption and Control of Biofilm‑Forming Pathogens via Impairing Ferrous Ion Uptake.
Patryk Strzelecki, Tom Ferté, Tomasz Klimczuk, Anna Zielińska-Jurek, Agnieszka Szalewska-Pałasz, Dariusz Nowicki
{"title":"Trans-Cinnamaldehyde-Driven Silver Nanoparticles: Dual Role in Targeting Biofilm Disruption and Control of Biofilm‑Forming Pathogens via Impairing Ferrous Ion Uptake.","authors":"Patryk Strzelecki, Tom Ferté, Tomasz Klimczuk, Anna Zielińska-Jurek, Agnieszka Szalewska-Pałasz, Dariusz Nowicki","doi":"10.2147/NSA.S542528","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Biofilm-related infections, especially those associated with medical devices like catheters, pose significant clinical challenges due to their resistance to conventional treatments. This study investigates a green chemistry-based approach to synthesize silver nanoparticles (AgNPs) stabilized with trans-cinnamaldehyde (<i>t</i>-CA) and evaluates their potential for combating microbial biofilms and based on novel mechanism of action.</p><p><strong>Methods: </strong>Silver nanoparticles (<i>t</i>-CA-AgNPs) were synthesized using <i>t</i>-CA as both a reducing and stabilizing agent. The NPs were then thoroughly characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), electron microscopy (TEM, SEM, STEM), and dynamic light scattering (DLS). We evaluated its antimicrobial potential against the most prevalence biofilm-forming pathogens including <i>Pseudomonas aeruginosa, Escherichia coli</i> and <i>Candida albicans</i> using minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) assays. Moreover, we investigated the mechanism of action of <i>t</i>-CA-AgNPs underlying biofilm inhibition. Biofilm formation and structure were verified by SEM imagining.</p><p><strong>Results: </strong>DLS analysis confirmed that <i>t</i>-CA-AgNPs had an average particle diameter of 2.5 nm, coupled with a notably negative zeta potential (-45 mV), indicative of good colloidal stability. <i>t</i>-CA-AgNPs displayed potent antimicrobial properties, with MIC values ranging from 26 to 412 µg/mL and MBC values from 103 to 825 µg/mL. Biofilm formation inhibitory properties reached 88.74% of inhibition for <i>P. aeruginosa</i> and 70.60% for <i>E. coli</i>. Moreover, we found potent metal ion-chelating capabilities, importantly, in binding and reducing ferrous ions, the crucial factor of biofilm formation. Furthermore, <i>t</i>-CA-AgNPs substantially impaired biofilm development on catheter surfaces, underscoring their robust antibiofilm potential.</p><p><strong>Conclusion: </strong>Presented here <i>t</i>-CA-AgNPs exhibit significant antimicrobial and antibiofilm activity. By effectively targeting critical elements in biofilm formation, such as ferrous ions, coupled with antimicrobial potential of both active compounds, these green-synthesized NPs have potential applications in significantly improving the safety and effectiveness of medical devices. However, further studies are needed to ensure their efficacy in clinical use.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"18 ","pages":"387-403"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/NSA.S542528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Biofilm-related infections, especially those associated with medical devices like catheters, pose significant clinical challenges due to their resistance to conventional treatments. This study investigates a green chemistry-based approach to synthesize silver nanoparticles (AgNPs) stabilized with trans-cinnamaldehyde (t-CA) and evaluates their potential for combating microbial biofilms and based on novel mechanism of action.
Methods: Silver nanoparticles (t-CA-AgNPs) were synthesized using t-CA as both a reducing and stabilizing agent. The NPs were then thoroughly characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), electron microscopy (TEM, SEM, STEM), and dynamic light scattering (DLS). We evaluated its antimicrobial potential against the most prevalence biofilm-forming pathogens including Pseudomonas aeruginosa, Escherichia coli and Candida albicans using minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) assays. Moreover, we investigated the mechanism of action of t-CA-AgNPs underlying biofilm inhibition. Biofilm formation and structure were verified by SEM imagining.
Results: DLS analysis confirmed that t-CA-AgNPs had an average particle diameter of 2.5 nm, coupled with a notably negative zeta potential (-45 mV), indicative of good colloidal stability. t-CA-AgNPs displayed potent antimicrobial properties, with MIC values ranging from 26 to 412 µg/mL and MBC values from 103 to 825 µg/mL. Biofilm formation inhibitory properties reached 88.74% of inhibition for P. aeruginosa and 70.60% for E. coli. Moreover, we found potent metal ion-chelating capabilities, importantly, in binding and reducing ferrous ions, the crucial factor of biofilm formation. Furthermore, t-CA-AgNPs substantially impaired biofilm development on catheter surfaces, underscoring their robust antibiofilm potential.
Conclusion: Presented here t-CA-AgNPs exhibit significant antimicrobial and antibiofilm activity. By effectively targeting critical elements in biofilm formation, such as ferrous ions, coupled with antimicrobial potential of both active compounds, these green-synthesized NPs have potential applications in significantly improving the safety and effectiveness of medical devices. However, further studies are needed to ensure their efficacy in clinical use.
期刊介绍:
Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.