Quantifying the spatial scales of animal clusters using density surfaces.

IF 3.5 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-09-01 Epub Date: 2025-09-24 DOI:10.1098/rsif.2025.0274
Max van Mulken, Jasper Eikelboom, Kevin Verbeek, Bettina Speckmann, Frank Van Langevelde
{"title":"Quantifying the spatial scales of animal clusters using density surfaces.","authors":"Max van Mulken, Jasper Eikelboom, Kevin Verbeek, Bettina Speckmann, Frank Van Langevelde","doi":"10.1098/rsif.2025.0274","DOIUrl":null,"url":null,"abstract":"<p><p>Animal clustering takes place at a variety of spatial scales. While methods to quantify clustering already exist, many of these methods are either scale independent, not parameter-free, or model proximity as a binary function, which makes them unsuitable for anisotropic systems and is not representative of the perception neighbourhood of animals. We describe a method to quantify the degree of clustering of point-location data at different spatial scales, which uses kernel density estimation to construct a density function from the underlying point-location data. We build upon this method to automatically detect cluster diameters using smoothing kernels that better represent the perception neighbourhood of animals. Finally, we test our methods on artificial datasets with varying clustering characteristics, as well as on a dataset of African bush elephants. Our method correctly assigns higher clustering values to spatial scales with high degrees of clustering and accurately outputs a set of spatial scales that correspond to cluster diameters. The accuracy of our method is insensitive to the chosen kernel function. Combined with the parameter-free nature of our method, this allows for easy detection of clustering scales in anisotropic and hierarchically clustered systems, such as animal groups.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 230","pages":"20250274"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12457028/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2025.0274","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Animal clustering takes place at a variety of spatial scales. While methods to quantify clustering already exist, many of these methods are either scale independent, not parameter-free, or model proximity as a binary function, which makes them unsuitable for anisotropic systems and is not representative of the perception neighbourhood of animals. We describe a method to quantify the degree of clustering of point-location data at different spatial scales, which uses kernel density estimation to construct a density function from the underlying point-location data. We build upon this method to automatically detect cluster diameters using smoothing kernels that better represent the perception neighbourhood of animals. Finally, we test our methods on artificial datasets with varying clustering characteristics, as well as on a dataset of African bush elephants. Our method correctly assigns higher clustering values to spatial scales with high degrees of clustering and accurately outputs a set of spatial scales that correspond to cluster diameters. The accuracy of our method is insensitive to the chosen kernel function. Combined with the parameter-free nature of our method, this allows for easy detection of clustering scales in anisotropic and hierarchically clustered systems, such as animal groups.

利用密度面量化动物群落的空间尺度。
动物聚集发生在不同的空间尺度上。虽然量化聚类的方法已经存在,但其中许多方法要么是尺度无关的,不是无参数的,要么是将模型接近性作为二值函数,这使得它们不适合各向异性系统,也不能代表动物的感知邻域。本文描述了一种量化不同空间尺度点定位数据聚类程度的方法,该方法利用核密度估计从底层点定位数据构造密度函数。我们在此方法的基础上,使用平滑核来自动检测聚类直径,平滑核更好地代表动物的感知邻域。最后,我们在具有不同聚类特征的人工数据集以及非洲丛林象数据集上测试了我们的方法。我们的方法正确地为高聚类度的空间尺度分配更高的聚类值,并准确地输出一组与聚类直径相对应的空间尺度。我们的方法的精度对所选择的核函数不敏感。结合我们方法的无参数特性,这允许在各向异性和分层聚类系统(如动物群体)中轻松检测聚类尺度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信