Functional stability despite structural changes in freshwater biofilm communities exposed to an antibiotic and an herbicide - the role of nutrient conditions.
Sophie Oster, Eric Bollinger, Verena C Schreiner, Tobias Schmitt, Sabine Filker, Mirco Bundschuh
{"title":"Functional stability despite structural changes in freshwater biofilm communities exposed to an antibiotic and an herbicide - the role of nutrient conditions.","authors":"Sophie Oster, Eric Bollinger, Verena C Schreiner, Tobias Schmitt, Sabine Filker, Mirco Bundschuh","doi":"10.1093/femsec/fiaf094","DOIUrl":null,"url":null,"abstract":"<p><p>Freshwater autotrophic biofilms play a vital role in primary production and nutrient cycling in freshwater ecosystems but are increasingly exposed to chemical stressors such as antibiotics or herbicides. Although nutrient availability may modulate biofilm sensitivity, its impact on biofilm responses to these stressors remains poorly understood. In four independent experiments, we investigated the functional (ash-free dry weight and chlorophyll a, b and c) and structural (16S/18S rRNA metabarcoding) responses of stream-derived biofilms under low- and high-nutrient levels to chronic exposure (14 days) to the antibiotic ciprofloxacin and the herbicide propyzamide in laboratory stream microcosms. High-nutrient levels strongly increased biofilms functional responses and altered the community composition. Chemical exposure led to pronounced shifts in prokaryotic (ciprofloxacin) and eukaryotic (propyzamide) communities, but without significant effects on functional responses, suggesting functional redundancy and ecological buffering capacity of freshwater biofilms. These results highlight the critical role of nutrient supply in biofilm responses and the need for caution when extrapolating laboratory results to field conditions.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12481197/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf094","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Freshwater autotrophic biofilms play a vital role in primary production and nutrient cycling in freshwater ecosystems but are increasingly exposed to chemical stressors such as antibiotics or herbicides. Although nutrient availability may modulate biofilm sensitivity, its impact on biofilm responses to these stressors remains poorly understood. In four independent experiments, we investigated the functional (ash-free dry weight and chlorophyll a, b and c) and structural (16S/18S rRNA metabarcoding) responses of stream-derived biofilms under low- and high-nutrient levels to chronic exposure (14 days) to the antibiotic ciprofloxacin and the herbicide propyzamide in laboratory stream microcosms. High-nutrient levels strongly increased biofilms functional responses and altered the community composition. Chemical exposure led to pronounced shifts in prokaryotic (ciprofloxacin) and eukaryotic (propyzamide) communities, but without significant effects on functional responses, suggesting functional redundancy and ecological buffering capacity of freshwater biofilms. These results highlight the critical role of nutrient supply in biofilm responses and the need for caution when extrapolating laboratory results to field conditions.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms